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ABSTRACT 

This thesis documents the use of the SRC-6 Reconfigurable Computer for use in 

analyzing low probability of intercept (LPI) signals using the Choi-Williams distribution. 

The SRC-6 is a reconfigurable computer manufactured by SRC Computers, Inc. which 

allows the user to tailor both the software and the hardware to a specific task. This 

increases the speed at which the task can be accomplished making it useful for 

applications in electronic intelligence (ELINT). The Choi-Williams distribution is a 

mathematical technique that was first created using MATLAB and then converted to C 

code for use on the SRC-6. The purpose of this study is to investigate the feasibility of 

using a reconfigurable computer for ELINT applications and the timely detection and 

classification of LPI signals. This thesis is part of a larger study to use reconfigurable 

computers for the autonomous detection and classification of LPI signals. 
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EXECUTIVE SUMMARY 

Low probability of intercept (LPI) signals are increasingly difficult to detect using 

traditional electronic intelligence (ELINT) approaches. Intercepting these signals and 

extracting parametric data for classification has become more and more challenging.  

A possible solution to the detection and classification of LPI signals for ELINT is 

to use multiple detection strategies against an LPI signal and automate the classification 

process. This would cover a variety of LPI signals and utilize the strengths of different 

detection strategies. The drawback to this solution is that many of these strategies take 

long computational times. 

The objective of this thesis was to investigate the feasibility of using the SRC-6 

reconfigurable computer to utilize the Choi-Williams distribution (CWD) as a detection 

strategy. Using a reconfigurable computer may decrease the computational time of the 

CWD. This objective is part of a larger study to use the SRC-6 for the autonomous 

detection and classification of LPI signals. 

First, the Choi-Williams distribution was designed in MATLAB to validate the 

strategy against several different types of LPI signals. This was used as a benchmark for 

future work. Second, the software was converted from MATLAB to standard C code. At 

this stage the code was functional on the common memory of the SRC but did not utilize 

the reconfigurable aspect of the SRC-6 hardware. Last, the code was modified to run on 

the Multi-Adaptive Processing (MAP) board utilizing the reconfigurable hardware 

aspects of the SRC-6. 

The results of the timing analysis show that the C code was the fastest 

implementation. The MATLAB implementation was highly dependent on the specific 

computer running the software and any background processes that may have been 

running. The SRC-6 C code implementation using the Multi-Adaptive Processing (MAP) 

board was comparable to the MATLAB code run on a 1.6 GHz processor with one 

gigabyte of random access memory using MATLAB Student Version 7.1. The SRC-6 C 
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code implantation was faster than the MATLAB code run on a 3 GHz processor with 512 

megabytes of random access memory using MATLAB 7.4.0 R2007b.  

 It should be noted that: (1) the MATLAB timing was greatly dependent on the 

specific computer running the software and any background processes that may have 

been running, (2) the Choi-Williams distribution kernel function was the most time 

consuming portion of the code in all three coding implementations (2) the SRC-6 code 

can be further optimized for this application and as an ELINT detection system as a 

whole. Further investigation into optimizing the SRC-6 C code for the Choi-Williams 

distribution should be accomplished. 
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I. INTRODUCTION  

A. BACKGROUND 

Low probability of intercept (LPI) signals are signals that are increasingly 

difficult to detect using traditional approaches. These signals are commonly mistaken for 

noise if they are noticed by the detection system at all. LPI signals use a variety of 

techniques using frequency modulation, phase modulation or a combination of techniques 

to avoid detection. 

 Intercepting these signals and extracting parametric data for classification has 

emerged as a new field of electronic warfare study in recent years. Several strategies for 

detecting and classifying these signals have emerged. Each strategy has its own strengths 

and weaknesses against the variety of LPI signals present. Some strategies work well 

against frequency modulated continuous wave (FMCW) LPI signals and others are used 

for extracting parameters from polyphase signals. 

 A possible solution to the detection and classification of LPI signals is to use 

multiple detection strategies against an LPI signal to extract as much information from 

the signal as possible. This would cover a variety of LPI signals and utilize the strengths 

of different detection strategies and compensate where a strategy was weak. The 

drawback to this solution is that many of these strategies take long computational times. 

The ideal implementation of this solution would be to achieve real time parallel 

processing of several detection strategies. The output of these detection strategies could 

be run through an automated detection system. This would allow for automated detection, 

classification, and parameter extraction of the LPI signal modulations. 

This thesis is an extension of a larger effort to create an autonomous LPI detection 

and classification system. This thesis explores the use of the SRC Computers Corporation 

SRC-6 reconfigurable computer in an automated LPI detection and classification system. 

Specifically, the SRC computer will be configured to use the Choi-Williams distribution 

(CWD) as a detection strategy to analyze signals [1].  
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B. OBJECTIVE 

The objective of this thesis was to investigate the feasibility of using the SRC-6 

reconfigurable computer to utilize the Choi-Williams distribution for detection and 

classification of LPI signals. This objective is part of a larger study to use the SRC-6 for 

the autonomous detection and classification of LPI signals.  

C. RELATED WORK 

The overall effort of using the SRC-6 for autonomous detection and classification 

of LPI signals has been the focus of several Naval Postgraduate School (NPS) theses. 

Figure 1 shows the overall design of the autonomous system. 

 

Figure 1:  Autonomous Low Probability of Intercept (LPI) Detection and 
Classification System Using the SRC-6 Reconfigurable Computer. (From: [2]) 

Captain Kevin Stoffel, United States Marine Corps (USMC) conducted the study 

of the quadrature mirror filter bank (QMFB) for use on the SRC-6 [2]. This analysis 

involved the conversion of a detected signal space into a frequency-time plot using 
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analog to digital (ADC) converters on the SRC-6. Ensign Dane Brown, United States 

Naval Reserve (USNR), generated  the signal processing to convert the frequency-time 

plot data into a bitmap [3]. This bitmap was used for LPI emitter classifications. Mr. 

Scott Bailey demonstrated the use of neural networks for the classification of LPI 

emitters, specifically for use with the QMFB bitmaps [4].   

Current work on the LPI detection system, excluding this thesis, include the study 

of cyclostationary signal processing on the SRC-6 by Gary Upperman, Department of 

Defense (DOD) civilian[5]. Future thesis work will concentrate on other areas of the LPI 

detection system as well as the integration of the whole system. 

D. THESIS ORGANIZATION 

The remainder of this thesis will be organized as follows: 

• Chapter II discusses the software development, giving a general 

background and a verification of the software code.  

• Chapter III discusses porting the software to the SRC-6, giving a general 

background on the SRC-6 hardware and showing the software 

modifications needed to use the SRC-6 hardware. 

• Chapter IV discusses performance analysis of the system using the 

generated code. 

• Chapter V provides an overall summary of the results, the conclusions 

generated from the results and any future work.  
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II. SOFTWARE GENERATION 

A. BACKGROUND 

Before any code was generated, an analysis of the Choi-Williams Distribution 

(CWD) was conducted. This distribution is similar to the Wigner-Ville Distribution 

(WVD) with a exponential kernel. A brief explanation of the distribution can be found in 

this chapter. 

To benchmark any code generated, the LPI Toolbox was used to create LPI 

signals. This software was developed by Dr. Phillip E. Pace and is documented in [6]. For 

more information on the LPI signals used, please see Appendix A.  

1.  Choi-Williams Distribution (CWD) 

 The Choi-Williams distribution (CWD) is a time-frequency analysis technique 

used for signal processing. A signal is considered stationary over a short time period and 

a “snapshot” is taken. A Fourier transform of the sampled in-phase and quadrature data is 

used to determine the energy distribution of the signal at the time of the sample. This 

energy distribution can be used to determine signal characteristics. The time period 

chosen for the sampled data determines the resolution of the Fourier transform. A short 

period gives poor frequency resolution and a long period in effect blurs the “snapshot”. 

 Several techniques have been identified to increase both frequency and time 

resolution concurrently. These techniques, or distributions, utilize different kernel 

functions to achieve better resolution. A kernel is a weighting function applied to the 

data. The output of a distribution is the original “snapshot” where the data has been 

smoothed and weighted to increase the time and frequency resolution. From these results 

signal parameters such as carrier frequency, pulse repetition intervals, coding schemes, 

etc. can be determined. 

One of the most common distributions is the Wigner-Ville distribution  which has 

a kernel of one. This distribution works well for “signals whose instantaneous frequency 
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and group delay correspond to the same curve in the time-frequency plane” [1]. However, 

when the WVD is applied to signals that do not fall into this category, there are cross 

terms that can obscure the results. The CWD described below has an exponential kernel 

and is useful for reducing the magnitude of the cross terms. 

The Choi-Williams distribution was identified by Choi and Williams in 1989 and 

found in [1]. The equation for the continuous Choi-Williams distribution of the input 

signal ( )x t is given by 

 
2

2
( )
4 /

2

1( , ) ( ) *( )
2 24 /

t
j

xCWD t e e x x d d
µ

ωτ τ σ

τ µ

τ τω µ µ µ τ
πτ σ

−∞ ∞ −
−

=−∞ =−∞

= + −∫ ∫  (1.1) 

where t  is the time variable,ω  is the angular frequency variable, σ  is a positive-valued 

scaling factor, and * indicates the complex conjugate.  The CWD can also be defined 

from the Fourier transform ( )X ω  of ( )x t as shown below. 
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This can then be expressed with a discrete time index and windowed for large 

data sample sets shown in the following equation 
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and ( )W n is a symmetrical window (such as Hamming) which has nonzero values on the 

interval - / 2N to / 2N and ( ) W µ is a uniform rectangular window that has a value of one 

for the range of - / 2M and / 2M . The choices of N and M on these windows 

respectively determine the frequency resolution of the CWD and the range at which the 

function will be defined. 

The discrete CWD can be modified to fit the standard discrete Fourier Transform 

(DFT) by setting / 2k Nω π= [7]. The final equation is written 
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where the kernel function '( , )S n  is defined as 
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S n n N

S n N N n N
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and ( , )S n is defined in Equation 1.4. 

2. Choi-Williams Distribution MATLAB Benchmark 

Equations (1.5) and (1.6) were then modeled in MATLAB. The MATLAB code 

was used to benchmark results found on the SRC-6 computer. A full description of the 

generation of the CWD expression used for all coding in this thesis can be found in [8]. 

Additional information in [9] and [10] were used to generate these results.  

The MATLAB code generates an N  by N matrix which results in a three 

dimensional  image that can be used to determine signal characteristics such as 

frequency, pulse repetition interval (PRI), and signal period to name a few. The variable 

N is defined as the number of samples input into the system. Due to the repetitive use of 

the Fast Fourier Transform (FFT) in the software, the size of N is generally set at a small 

power of two, either 256 or 512 samples. Examples of the image output for N equal to 

512 are shown in Figures 2 through 5.  

In this example, an LPI signal using FMCW techniques can be seen. The FMCW 

signal was generated with a carrier frequency of 1 kHz, a sampling frequency of 7 kHz, a 

modulation frequency (bandwidth) of 250 Hz, a modulation period of 20µs and a signal 

to noise ratio (SNR) of 0 dB.  

 Figure 2 shows the 3-D plot of the software results. Notice that the FMCW signal 

is clearly visible against the background noise. More information can be seen by 

examining this graph from different perspectives. 
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Figure 2:  3-D Mesh Plot of an FMCW Test Signal Using MATLAB CWD 
Software. 

Figure 3 shows a plot of the marginal frequency distribution. This shows the 

CWD identified the carrier frequency of 1 kHz. The width of the modulation is the 

FMCW modulation bandwidth, F∆ , of 250 Hz. 

 

Figure 3:  Marginal Frequency Distribution of an FMCW Test Signal Using 
MATLAB CWD Software. 
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 Figure 4 shows the marginal time distribution.  This perspective of an FMCW 

signal does not clearly show the important characteristics of the signal. It is included here 

as an example of the type of output available when performing a CWD on an LPI signal. 

 

Figure 4: Marginal Time Distribution of the FMCW Test Signal Using MATLAB 
CWD Software. 

The final perspective is a time-frequency plot of the modulation as shown in 

Figure 5. The carrier frequency, the modulation bandwidth and the modulation period can 

all be identified from this perspective. The signal is visible at the carrier frequency of 1 

kHz. The modulation period, which was unclear in the previous figures, can now be seen. 
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Figure 5:  Time - Frequency Plot of an FMCW Test Signal Using MATLAB CWD 
Software. 

 Figures 2 thru 5 above are examples of the output of the CWD software code. 

Signal characteristics can be clearly identified and extracted from the graphs due to the 

reduction of cross-terms. Producing these graphs in a real-time environment and coupling 

it with an automatic identification algorithm would be advantageous in many military 

applications.  

3.  Choi-Williams Distribution C Benchmark 

The MATLAB code was first converted into C code to be translated to the SRC-6. 

A step by step verification process of the C code was performed to verify the Choi-

Williams distribution technique. After the code was verified on a small scale, the code 

was tested against a variety of fully developed signals generated by the LPI Toolbox.  
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B. 4 BY 4 INPUT SIGNAL VERIFICATION 

For an N by N  verification, a portion of a generated LPI signal was used. 

N must be a power of two therefore an LPI signal with a length of four samples was 

used. A signal of four samples is not long enough to determine signal characteristics but 

was sufficient to verify the software. 

1. Input Signal 

The input signal is described below in Table 1. For the code, the input signal must 

be a readable file with a column of real (I) data and a column of imaginary (Q) data. 

Table 1.   Input Signal Data for Code Verification. 

I Data Q Data 
0.423889315973369 -0.576110684026631 
1.323504414322150  1.481846094931446 

 -1.482367378829204 -0.284918532691066 
 -0.932103072187372  0.402749534832605 

 

2. Wigner-Ville Distribution 

The first step in carrying out the Choi-Williams distribution is to calculate the 

Wigner-Ville distribution and then modify that output with Choi-Williams weighting 

functions. In MATLAB, this step was a single for loop. In the resulting C code this step 

was a multiple stage loop shown in Appendix B. Each step had to be broken out into a 

separate loop and included in an overall loop.  

The output of the MATLAB code (variable “WV”) is shown in Table 2. This data 

can be compared to the output of the C code (variables “IWV” and “QWV”) found in 

Table 3. Data in Tables 2 and 3 have been rounded to fit the table format. MATLAB and 

the C code uses 15 decimals of precision. 
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Table 2.   MATLAB Code Output for Wigner-Ville Distribution. 

 Column 1 Column 2 Column 3 Column 4 

Row 1 1.0310 0 0 0 

Row 2 2.2786 -0.6368 - 1.9143i 0 -0.6368 + 1.9143i 

Row 3 3.9475 -0.4642 + 0.9748i 0 -0.4642 - 0.9748i 

Row 4 0.5116 0 0 0 

 

Table 3.   C Code Output for Wigner-Ville Distribution. 

 Real Data (I) 

 Column 1 Column 2 Column 3 Column 4 

Row 1 1.0310 -0.0000 0.0000 -0.0000 

Row 2 2.2786 -0.6368 0.0000 -0.6368 

Row 3 3.9475 -0.4642 0.0000 -0.4642 

Row 4 0.5116 0.0000 0.0000 0.0000 

 Imaginary Data (Q) 

 Column 1 Column 2 Column 3 Column 4 

Row 1 -0.0000 -0.0000 -0.0000 -0.0000 

Row 2 -0.0000 -1.9143 -0.0000 1.9143 

Row 3 -0.0000 0.9748 -0.0000 -0.9748 

Row 4 -0.0000 -0.0000 -0.0000 -0.0000 

 

Notice that the solutions to the Wigner-Ville distribution are the same for both 

sets of code. The only difference is the way in which the complex numbers are stored. 

The final output of the Wigner-Ville distribution is an N -by- N  array.  

3. Choi-Williams Kernel Function 

 Once the Wigner-Ville distribution is calculated the Choi-Williams kernel 

function, '( , )S n , can be determined and applied to the Wigner-Ville output array. In 

MATLAB, using array functions, the kernel can be applied using a single nested for loop. 

The C code implementation had to be broken into several steps. 
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 The output from the MATLAB code for the Choi-Williams distribution before the 

FFT can be found in Table 4 and is labeled in the MATLAB code “kern” while the output 

of the equivalent C code is shown in Table 5 and is labeled “Ikern” and “Qkern”. 

Table 4.   MATLAB Code Output for Choi-Williams Distribution. 

 Column 1 Column 2 Column 3 Column 4 

Row 1 0.5116 3.9475 2.2786 1.0310 

Row 2 -0.1681 - 0.0155i -0.2709 + 0.1456i -0.2816 + 0.3259i -0.1881 + 0.3194i 

Row 3 0.0000 0.0000 0.0000 0.0000 

Row 4 -0.1681 + 0.0155i -0.2709 - 0.1456i -0.2816 - 0.3259i -0.1881 - 0.3194i 

 

Table 5.   C Code Output for Choi-Williams Distribution. 

 Real Data (I) 

 Column 1 Column 2 Column 3 Column 4 

Row 1 0.5116 3.9475 2.2786 1.0310 

Row 2 -0.1681 -0.2709 -0.2816 -0.1881 

Row 3 0.0000 0.0000 0.0000 0.0000 

Row 4 -0.1681 -0.2709 -0.2816 -0.1881 

 Imaginary Data (Q) 

 Column 1 Column 2 Column 3 Column 4 

Row 1 -0.0000 -0.0000 -0.0000 -0.0000 

Row 2 -0.0155 0.1456 0.3259 0.3194 

Row 3 -0.0000 -0.0000 -0.0000 -0.0000 

Row 4 0.0155 -0.1456 -0.3259 -0.3194 

 

Again, the data from both source codes is comparable, only the way in which the 

complex numbers are stored varies from MATLAB to C code. This shows that the data 

manipulation prior to completing the FFT produces the same results. 

4. Fast Fourier Transform Function 

In MATLAB, the FFT is accomplished by using the built-in fft() code available. 

Neither the standard library, nor the math library in C, contains an equivalent function. 
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Therefore a separate FFT had to be generated. Code supplied by Professor Jerome R. 

Breitenbach of California Polytechnic State University was used to accomplish the FFT 

needed [11]. This code can be found in Appendix C. 

The final result of the MATLAB code contains only the real portion of the FFT 

and can be found in Table 6.  Table 7 contains the real portion of the equivalent C code 

output. From this final output there are differences in the fourth decimal place. This is 

most likely due to differences in the implementation of the FFT. 

Table 6.   MATLAB Code Output for a 4 by 4 Input Matrix. 

 Column 1 Column 2 Column 3 Column 4 

Row 1 0.3509 6.8116 3.4307 1.3097 

Row 2 0.9612 8.4774 5.8606 3.3396 

Row 3 1.6955 8.9785 5.6837 2.8144 

Row 4 1.0852 7.3128 3.2538 0.7845 

 

Table 7.   C Code Output for a 4 by 4 Input Matrix. 

 Column 1 Column 2 Column 3 Column 4 

Row 1 0.3509 6.8116 3.4306 1.3097 

Row 2 0.9612 8.4774 5.8606 3.3397 

Row 3 1.6955 8.9785 5.6837 2.8144 

Row 4 1.0852 7.3127 3.2538 0.7844 

 

5. 4 by 4 Verification Results 

 From this detailed analysis it can be shown that the C code functions as designed 

at each critical step of the software code. With this knowledge it can now be shown that 

the C code will function as desired when larger input matrices are used. From a practical 

standpoint, a larger input matrix is equivalent to a larger sample size of an unidentified 

LPI signal. 
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C. 512 BY 512 INPUT SIGNAL VERIFICATION 

Practically, it is difficult to show the same steps as shown in previously using 

tables. The identical graphing function in MATLAB will be used on both the matrix 

output of the MATLAB code and the C code to make an accurate comparison. The code 

can be found in Appendix D. Figure 5 showed the results of a MATLAB CWD 

calculation with N equal to 512.  Figure 6 shows the output of the C CWD calculation. 

 

Figure 6:  Time vs. Magnitude Plot FMCW test signal using C code CWD software. 

There is very little visible difference between Figure 5 and Figure 6. A close 

inspection reveals minor differences that can be contributed to the different FFT 

algorithm. This is a final confirmation that the C code performs as expected when 

compared to the MATLAB output. 

 It should be noted that an N  of less than 512 begins to decrease the number of 

signal characteristics that can be determined. A sample size of 256 would reduced the 
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above graph to half of the time scale. This would make the modulation period difficult to 

detect. These results may vary depending on what type of LPI signal is being analyzed.  

D. SOFTWARE GENERATION – CONCLUSION 

 The CWD was a time-frequency analysis technique that used an exponential 

kernel, or weighting function, for signal processing. MATLAB code for the CWD was 

analyzed for a signal with a length of 512 samples. Standard C code was generated and a 

step by step verification was conducted with a signal length of four. These results were 

then expanded to verify that the C code functioned correctly for a signal length of 512 

samples.  

 In the next chapter, the SRC-6 was reviewed and the standard C code was 

modified to utilize SRC-6 resources. Several signals were analyzed to verify that the 

algorithm was successfully modified from the original MATLAB. 
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III. SRC-6 IMPLEMENTATION 

A. BACKGROUND 

The final stage of converting the MATLAB code for use on the SRC-6 is to make 

some modifications to the C code developed above. The goal of converting the CWD 

technique to function on the SRC-6 is to increase the speed of the computation.  

1. SRC-6 Hardware Background 

The SRC-6 is a reconfigurable computer which can be tailored for a specific 

objective.  Figure 7 shows a generic overview of the system architecture. There is a 

microprocessor board, a Multi-Adaptive Processing (MAP) board, and a common 

memory. The MAP is interfaced to the microprocessor board via Direct Memory Access 

(DMA) Procedures. Both the MAP and the microprocessor board have access to a 

common memory. 

 

 

Figure 7:  SRC-6 System Architecture. (From: [12]) 
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A diagram of the SRC-6 at NPS can be found in Figure 8. The SRC-6 has two 

microprocessor boards. Each microprocessor board contains two Intel® Xeon™ 2.8 GHz 

processors. There are five Multi-Adaptive Processing (MAP) boards available, two MAP 

B boards and three MAP E boards. The B series board was not used for this thesis.  

 
                           Front       Back 

Figure 8:  Naval Postgraduate School SRC-6 Diagram. 
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The MAP E board contains two Virtex-II Pro XC2VP100 Platform Field 

Programmable Gate Arrays (FPGAs) which perform the user logic sent to the MAP. 

There are seven on-board memory banks with a total bandwidth of 11.2 

gigabytes/second. The MAP also has two general purpose input/output ports for MAP to 

MAP connections or other data input [13]. Figure 9 shows the outline of a MAP board. 

 

Figure 9:  SRC-6 Multi-Adaptive Processing (MAP) Boards Diagram. (From: [13]) 

 The MAP board is the key to the SRC-6’s potential performance improvement 

over the standard MATLAB routine execution on a standard computer. Each MAP board 

is independent of the microprocessor and has access to the common memory. The MAP 

board is controlled by a command list that controls functions such as the DMA 

interactions. The FPGAs in the MAP board contain the user defined algorithm. Individual 

MAP boards can interact between other MAP boards without using the memory 

bandwidth in the system [14].  

 Each MAP can be used to perform repeated algorithms found in the overall larger 

code. For example, the FFT algorithm used in the MATLAB and C code can be run 

separately on the MAP unit and not access other common memory used for other 

functions in the code. 
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 An LPI detection system benefits from running multiple algorithms 

simultaneously on the same data set. Algorithms can be tailored to maximize the 

performance of each detection strategy and the autonomous classification of LPI signals. 

2. SRC-6 Software Configuration 

Three types of files are needed to execute the algorithm generated in Chapter 

II.A.3 on the SRC-6 system. These files are the Makefile, the main file, and the MAP 

routines. Each type of file is outlined below. Refer to [14] for more information on each 

type of file and its construction. 

The Makefile defines what preprocesses have to occur prior to compilation. It also 

includes instructions for the type of complier to be used, flags used for debugging, and 

floating point standards. The Makefile also specifies which main file, map routines, and 

user macros (if any) should be compiled. The name of the output file is also established. 

The Makefile is used to compile all the routines at once. A template is given in [14]. 

The second type of file is the main body of the algorithm, usually generated in C 

or Fortran. This main file may contain the brunt of the algorithm setup and definition. 

This portion of code is run on the microprocessor(s) of the SRC-6. 

The largest computational function in the algorithm is defined in the third type of 

file, the MAP routine files. These are the files to be specifically run on the MAP 

processor. Several MAP routines can also be identified and use the same MAP board for 

different portions of the algorithm. No MAP routine has to be defined if all of the 

algorithm will be processed using the microprocessor. However, without utilizing the 

MAP board all the benefits of a reconfigurable computer are lost. 

3. SRC-6 Summary 

 In summary, to utilize the benefits of the SRC-6, the C code generated in Chapter 

II must be modified to take advantage of the MAP boards. This modification allows more 

repetitious sections of code to be performed on the FPGAs on the MAP boards which can 

increases the overall speed of the computation. Due to the configurable nature of the 



 

 21

SRC-6 there are many ways to modify the original C code to take advantage of the MAP 

boards. One implementation is identified in the next section. 

B. CODE CONVERSION 

 The code in Chapter II was modified to run on the SRC processors and MAP 

boards. Three files were generated to run the Choi-Williams Distribution. Each file is 

detailed below.  

1. Main Code 

The main code, named choiSRC.c, needed very little modifications. Overall, the 

code functions the same as it did previously. Most of the modification required was 

necessary to interface with the function located on the MAP board. The main code can be 

found in Appendix E. 

 First, to use the MAP board, the board itself had to be allocated and set aside for 

the function. This is accomplished using a map_allocate(X) command. Similarly, 

after the function has been called and the MAP board is no longer needed a 

map_free(X) command is used. 

 Second, the arrays that are sent to the function have to be aligned in memory. To 

facilitate this function the SRC has a built in function called 

Cache_Aligned_Allocate(size). This function positions a pointer along a 

cache-aligned buffer and replaces all the malloc commands found in the original C 

code. 

 Last, the FFT algorithm used in the original C code was a recursive code that 

could not be directly translated to the MAP board. Because of this a different FFT 

algorithm was used. This algorithm required the generation of a twiddle table which was 

used as a weighting table in the FFT algorithm. This table was based on the length N of 

the input signal. 
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2. MC Code 

The FFT algorithm was the function that was ported to the MAP board. The 

original C code FFT algorithm was not easily portable to the MAP board therefore a new 

FFT algorithm was needed. The SRC Computers Corporation provided NPS with an FFT 

library that could be used directly by the MAP board and sample code on how to 

efficiently use the library [15]. The sample code was modified to fit the specific needs of 

the original C code and increase the efficiency of the code for this specific use. A copy of 

this code can be found in Appendix F. 

3. Makefile Code 

The Makefile used for this code began with the standard template. The sections 

for FILES, MAPFILES, and BIN were appropriately filled out. To run the FFT provided 

by SRC Computers, extra lines to include the FFT_LIB were added. Also, the flags were 

set to –log so that a log file would be generated after the code was complied. The code 

can be found in Appendix G. 

C. CODE VERIFICATION - FMCW 

An N by N comparison where N is equal to 512 was conducted to verify the 

SRC C code is functioning as designed. First, the signal used in the previous section was 

used to verify the SRC C code results.  Second, the code was run against three other LPI 

signals to confirm that the software is robust and can support a variety of LPI signals. 

1. FMCW LPI Signals 

 The LPI signal used in Figures 5 and 6 was again be used for verification of the 

SRC C code. The signal used was an FMCW with a carrier frequency of 1 kHz, a 

sampling frequency of 7 kHz, a modulation bandwidth of 250 Hz, a modulation period of 

20 µs and a SNR of 0 dB. Figure 10 shows the results of the SRC C code using 

MATLAB to graph the results. 
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Figure 10:  Time - Frequency Plot of an FMCW Test Signal Using SRC C Code 

CWD Software. 

 A comparison between Figures 5, 6 and 10 show that the output is indeed similar. 

It is important to note that these results do not show the magnitude of the output. Due to 

the different FFT algorithms used at each stage (MATLAB, C, and SRC) the magnitudes 

of these graphs are all different. For use in LPI detection and identification however, the 

magnitude of these plots is irrelevant as long as the ratios are maintained as shown in the 

graphs above. 

2. Frank Code LPI Signals 

 Frank codes are polyphase codes that are derived from linear frequency 

modulated (FM) waveforms. This code approximates a linear FM using a finite number 

of frequency steps. The Frank code had a carrier frequency of 1 kHz with four frequency 

steps and one cycle per step. The period was 16 ms and the SNR was 0 dB. It was 

sampled at a rate of 7 kHz. For more information on Frank codes see [6], Section 5.6. 

Figure 11 shows a comparison between the MATLAB code and the SRC C code.  
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Figure 11a:  MATLAB Results on a Frank Code LPI Signal. 

 
Figure 11b:  SRC Results on a Frank Code LPI Signal. 
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There is no discernable difference between Figures 11a and 11b. The LPI signal is 

very visible against the 0 dB of noise. The code period of 16 ms is well defined as well as 

the code bandwidth. The carrier frequency is the middle point of the bandwidth and is 1 

kHz. 

3. Costas Code LPI Signals 

 Costas codes are sequences of frequencies that are best suited for unambiguous 

range and Doppler measurements with limited amount of interference between 

frequencies. The Costas codes used for this example are [3000, 2000, 6000, 4000, 5000, 

1000] Hz. Each frequency is on for a duration of 0.005 seconds. The ADC has a sampling 

frequency of 15,057 Hz and the SNR is 0 dB.  For more information on Costas codes see 

[6], Section 6.4. Figure 12 shows the results of both the MATLAB and the SRC 

implementations. 

 

Figure 12a:  MATLAB Results on a Costas Code LPI Signal. 
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Figure 12b:  SRC Results on a Costas Code LPI Signal. 

Both Figure 12a and 12b show the same results using two different coded 

algorithms. Note that each frequency is noted as a different color in the graph and they 

occur along the time axis in the order in which they were originally transmitted. The 

Costas sequence used by the LPI signal is very apparent without any prior knowledge of 

the signal. 

4. Hybrid Code LPI Signals 

 A hybrid LPI signal is a signal that combines characteristics from both frequency 

modulation techniques and phase modulation techniques. A 5-bit Barker code is used for 

each frequency in the Costas sequence and the Costas sequence is the same sequence 

used in Section C.3. For more information on hybrid LPI signals see [6], Section 6.5. The 

results are shown in Figure 13. 
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Figure 13a:  MATLAB Results on a Hybrid Costas Code LPI Signal. 

 
Figure 13b:  SRC Results on a Hybrid Costas Code LPI Signal. 
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Figures 13a and 13b appear to be identical. Because of the dual LPI signal 

techniques used on this signal it is harder to identify the six Costas codes but they are 

visible in the diagram. The 5-bit Barker code is only visible by the spreading of the 

frequency “spikes”. Another detection strategy may be more practical for determining the 

Barker code sequence. 

D. CODE VERIFICATION – CONCLUSION 

 From the analysis of the above four signals it can be concluded that the SRC 

implementation of the SRC code is functioning as designed and compares favorably to 

the results generated by MATLAB. An analysis of the algorithm’s speed on the three 

software platforms will be conducted in the next chapter.  

 



 

 29

IV. PERFORMANCE EVALUATION 

A. BACKGROUND 

 The objective of this thesis was to investigate the feasibility of using the SRC-6 

reconfigurable computer to compute the CWD on LPI signals. To this point the code has 

been verified and the CWD can be processed on the SRC-6. For a complete evaluation 

the final step is to determine the speed at which the CWD algorithm can be performed. 

For comparison purposes, the speed of the SRC algorithm utilizing the MAP boards will 

be compared against both the speed of the MATLAB code and the C code. 

The MATLAB code was timed twice, once on a 3.0 GHz Pentium 4 Windows-

based networked computer with 512 megabytes of random access memory using 

MATLAB 7.4.0 R2007b and again on a stand alone computer with a 1.6 GHz processor 

with one gigabyte of random access memory using MATLAB Student Version 7.1. The 

C and the SRC-6 C code were run on the Linux-based SRC-6 processor utilizing the 

same C compiler to help ensure a valid comparison. 

B. ASSUMPTIONS 

 The following assumptions were used to make the most accurate comparison 

possible: 

• All input LPI signals were a length of 512 samples long. 

• The graphing functions were assumed to take the same amount of time and 
were not included in the overall timing of the algorithm. The results of the 
CWD would be input to the next phase of an automated LPI detection and 
classification system (such as Figure 1) and would not be graphed as 
output for a user to view. 

• The time to read in a file or read out a file was not included. While this 
function was necessary for the SRC output, it was not generated in the 
MATLAB code. In an LPI detection system the input would be fed 
directly to the hardware and the output would be sent to the next phase, 
not converted to an output file. 

• In MATLAB the tic and toc functions were used. The output of these 
functions is a total elapsed time in seconds. 
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• The C and SRC code was timed using the structure found in Appendix H. 
This structure allowed for more precise timing than the time() function. 
The output was in seconds. The hardware dependency of the timing 
function was reduced by using the SRC compiler for both SRC and the C 
code. All timing was accomplished when there were no other users 
utilizing any SRC resources. 

• A total of 20 trials were conducted for each algorithm. These were then 
averaged to generate a mean value. The results of all the trials can be 
found in Appendix I. 

C. RESULTS 

The timing results can be found in Table 8 below.  

Table 8.   Time Results for Choi-Williams Distribution Code. 

LPI Signal File Name File 
Size 

MATLAB 
Code1 
(sec) 

MATLAB 
Code2 
(sec) 

C 
Code 
(sec) 

SRC C  
Code 
(sec) 

FMCW F_1_7_250_20_0 58 kB 42.36 34.08 6.85 36.64 
Frank Codes FR_1_7_4_1_0 29 kB 42.38 34.26 6.85 36.56 

Costas Codes C_1_15_5000_0 133 
kB 42.42 34.30 6.87 37.44 

Hybrid 
Costas Codes FSK_PSK_Costas_15_5_0 53 kB 42.44 34.31 6.86 36.96 

Note: C code timing utilized the C compiler on the SRC but not the Multi-Adaptive Processing (MAP) 
board. The SRC Code timing used both the C compiler and the MAP board. 

1: MATLAB Code was run on a 3 GHz processor with 512 megabytes of random access memory 
using MATLAB 7.4.0 R2007b.  

2: MATLAB Code 2 was run on a 1.6 GHz processor with one gigabyte of random access memory 
using MATLAB Student Version 7.1.   

 From the above results there are several important items to note: 

• It can be seen that the type of LPI signal did not have any affect on the 
overall timing regardless of the code used.  

• The file size did not have any affect on the length of time to run the code. 
The CWD algorithm only used the first 512 samples, regardless of the 
number of samples in the file.  

• The C code was the fastest code and the slowest code was the MATLAB 
code run on a 3 GHz processor with 512 megabytes of random access 
memory using MATLAB 7.4.0 R2007b. 
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1. MATLAB Results 

An analysis of the MATLAB code shows that the majority of the time is spent 

computing the CWD kernel. This is the section of code that computes the exponential 

kernel of the CWD and gives the CWD an advantage over the Wigner-Ville distribution 

by reducing cross terms. There were no apparent areas in the loop that could be altered to 

increase the speed of the code. 

 The MATLAB code was timed on two different computers. Timing was 

dependent on the version of MATLAB and the hardware used. If it is assumed that the 

Student Version would not outperform the full version of the software then the speed 

increase must be due to either the availably of more random access memory or the 

absence of background processes typically present on a networked computer. Timing 

results of different aspects of the MATLAB code can be seen in Table 9. It can be seen 

that approximately 80% of the time was spent in the CWD kernel portion of the 

algorithm. 

Table 9.   Time Results for Choi-Williams Distribution (CWD) MATLAB Code. 

LPI Signal 
MATLAB

Code1 
(sec) 

CWD 
Kernel1

(sec) 

FFT1

(sec)

MATLAB
Code2 
(sec) 

CWD 
Kernel2 

(sec) 

FFT2 
(sec) 

FMCW 42.36 33.56 0.03 34.08 27.40 0.02 
Frank Codes 42.38 33.59 0.03 34.26 27.52 0.02 
Costas Codes 42.42 33.63 0.03 34.30 27.56 0.02 
Hybrid Costas 

Codes 42.44 33.66 0.03 34.31 27.52 0.02 
1: MATLAB Code was run on a 3 GHz processor with 512 megabytes of random access memory 

using MATLAB 7.4.0 R2007b.  

2: MATLAB Code 2 was run on a 1.6 GHz processor with one gigabyte of random access memory 
using MATLAB Student Version 7.1.   

2. C Code Results 

 The C Code was also analyzed to determine if the speed could be increased. A 

straight conversion of the MATLAB code to C code, compiled using gcc, is very 

inefficient and took approximately 98 seconds to run. This code was then reviewed to 

determine if there were areas that could be improved on. Redundant computations were 
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removed and calculations were performed congruently within one loop versus individual 

loops for each task. This efficient use of loops and streamlining of the code removed 36 

seconds from the overall speed and was approximately 36 seconds.  

Next the compiler itself was reviewed. Using icc in place of gcc improved the 

speed of the code. Then the compiler options were reviewed. The code streamlined 

previously to approximately 36 seconds was reduced to approximately 6.5 seconds using 

the compiler options: -O3 -tpp7 -xW -align -Zp16 -ipo –static . “-O3” 

is an optimization option that vectorizes loops in the code to perform more efficiently. “-

tpp7 and –xW” are optimization codes specifically designed to work with Pentium 4 

processors. The remaining options affect the way memory is used in the processor. For 

more information on the options used see [16]. 

Table 10 shows the results of timing the C code. It can be seen that the majority of 

the C code time, approximately 97%, was spent computing the CWD kernel. Execution 

time of the FFT was longer in the C code than in MATLAB and the SRC code. 

Table 10.   Time Results for Choi-Williams Distribution (CWD) C Code. 

LPI Signal C Code 
(sec) 

CWD Kernel 
(sec) 

FFT 
(sec) 

FMCW 6.85 6.66 0.08 
Frank Codes 6.85 6.66 0.08 
Costas Codes 6.87 6.68 0.08 

Hybrid Costas Codes 6.86 6.67 0.08 

 

3. SRC C Code Results 

The optimized C code was used in developing the SRC C code using the MAP 

resources. The compiler options used were: -O3 -tpp7 -xW –ip.  The options to 

affect memory would not function on the SRC. However all pointers were instantiated 

using Cache_Aligned_Allocate verses malloc to align pointers at a cache 

boundary. Table 11 shows timing results of individual aspects of the SRC code. 
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Table 11.   Time Results for Choi-Williams Distribution SRC C Code. 

LPI Signal 
Microprocessor 

(sec) 
MAP 
(sec) 

DMA 
(sec) 

FFT  
(sec) 

Call  
(sec) 

FMCW 36.407 0.028 0.023 0.004 0.209 
Frank Codes 36.329 0.027 0.023 0.004 0.206 
Costas Codes 37.203 0.027 0.022 0.004 0.206 

Hybrid Costas Codes 36.725 0.027 0.022 0.004 0.205 
 

The Microprocessor time is average time the algorithm spent on the 

microprocessor. The MAP time was the average time it took to execute the entire MAP 

subroutine which consists of the DMA time and the FFT time. The DMA time is the 

average amount of time it took to transfer data to the MAP. The FFT time was the 

average amount of time to complete the MAP routine. The Call Time is the average 

amount of time to transition from the main C code to the MAP routine. These values are 

the cumulative results throughout the entire program executed using 512 data samples. 

For example, the FFT algorithm took 0.004 divided by 512, or 0.000008 seconds, each 

time the algorithm was called.  Also note, that the summation of the Microprocessor time, 

the MAP time, and the Call time are equal to the data shown in Table 8.  

4. Results Summary 

 Each code implementation was slowest when executing the CWD kernel function. 

This function is integral to the distribution and cannot be removed without altering the 

distribution itself. However it may be able to be manipulated to achieve a faster program. 

 Each program implemented the FFT algorithm differently. The MATLAB code 

used the built-in fft() function. The C code utilized the code from Professor Jerome R. 

Breitenbach found in Appendix C. The SRC implementation used the FFT provided by 

SRC Computer, Inc. Table 12 shows the timing results of each FFT algorithm. From 

these results it can be seen that the SRC implementation was an order of magnitude faster 

than either the MATLAB or the C FFT implementation. It can also be seen that the 

timing is not dependent on the type of LPI signal.  
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Table 12.   Time Results for the Fast Fourier Transform (FFT). 

LPI Signal 

MATLAB 
FFT1 
(sec) 

MATLAB  
FFT2 
(sec) 

C FFT 
(sec) 

SRC FFT 
(sec) 

FMCW 0.03 0.02 0.08 0.004 
Frank Codes 0.03 0.02 0.08 0.004 
Costas Codes 0.03 0.02 0.08 0.004 

Hybrid Costas Codes 0.03 0.02 0.08 0.004 
1: MATLAB Code was run on a 3 GHz processor with 512 megabytes of random access memory 

using MATLAB 7.4.0 R2007b.  

2: MATLAB Code 2 was run on a 1.6 GHz processor with one gigabyte of random access memory 
using MATLAB Student Version 7.1.   

 

 It is important to note that timing the code itself added delays into the code at 

every step. The intrusion was minimal in the MATLAB code using the tic and toc 

functions. However in the C and SRC code an additional library was added, an additional 

.c file was included and multiple gettimeofday() commands and other timing 

commands were added to the code. These additions and extra calculations must add some 

delay to both the C code and the SRC code. The final results and conclusions are found in 

the next chapter. 
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V. RESULTS AND CONCLUSIONS 

A. RESULTS 

 The timing results in the previous chapter show several important overall results. 

These results are summarized below. 

 MATLAB Code: 

• The MATLAB code performed the slowest when utilizing 3 GHz processor 
with 512 megabytes of random access memory using MATLAB 7.4.0 
R2007b.  

•  The MATLAB results were consistent regardless of what signal was 
processed. 

• The MATLAB results were dependent on the specific computer being used 
and what other programs were running in the background. The speed was 
impacted by more than several seconds when the computer was processing 
several programs. The results are also dependent on the amount of random 
access memory available. 

C Code: 

• The C code performed the fastest.   

• The C code results were consistent regardless of what signal was processed. 

• The C code could be further optimized past the original line-by-line 
translation of the MATLAB code. 

• Additional speed could be achieved using compilation options that were not 
available in MATLAB. 

SRC C Code: 

• The SRC C code was approximately six times (or 80%) slower than the 
original C code. The SRC results were faster than the MATLAB code using a 
3 GHz processor with 512 megabytes of random access memory using 
MATLAB 7.4.0 R2007b. The SRC results were comparable to the 
MATLAB code using a 1.6 GHz processor with one gigabyte of random 
access memory using MATLAB Student Version 7.1.   

• The SRC C code results were consistent regardless of what signal was 
processed. 

• The SRC C code could not use all the compilation options that were used 
when the C code (without using the MAP board) was compiled.  
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• The C and SRC algorithms were compared with the respective FFTs 
removed.  When the same compiler options were used, the C code took 
approximately 7 seconds where the SRC C code took approximately 36 
seconds. This comparison utilizes the same code, the same processor, the 
same compiler, and the same compiler options. The difference in timing could 
not be resolved. 

B. CONCLUSIONS 

 The Choi-Williams distribution uses a recursive exponential kernel function to 

remove cross terms in a time-frequency analysis of a complex signal. While the use of the 

kernel reduced cross terms and allows for an improved estimations of signal parameters, it is 

also computationally expensive. 

 The MATLAB implementation of the code was a straight-forward manipulation 

of the Choi-Williams distribution. This allows for an easier initial code generation. 

However, the extra tools available in MATLAB which made the coding simpler 

(complex numbers, matrix manipulation, etc.) generated overhead that cost the 

implementation speed. 

 The C code implementation was optimized and used compilation options to make 

loop calculations more efficient without affecting the function of the loop itself. This 

allowed the C code to be highly efficient and to perform the fastest. 

 The SRC C code utilizing the MAP board was extremely efficient in areas of the 

code that were implemented on the MAP itself but lost optimization on the sections of 

code that were still implemented on the main processor. There are several options to 

utilize the speed of the MAP: 

• Take additional sections of the main code, like the Choi-Williams kernel, and 

process it on the MAP as a separate MC file. This would take a large portion 

of the work of the program and parse it out to the faster MAP board. 

However, a direct porting of the CWD kernel to the MAP would not be 

efficient due to the number of computationally difficult tasks such as division, 

square roots, and exponential function that occur in the CWD kernel.  
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• Investigate alternative coding schemes for the Choi-Williams kernel in the 

main program to see if it can be streamlined. 

• Investigate alternative memory allocations for the algorithms. Data may be 

more efficiently managed using shared memory between the MAP and the 

microprocessor verses the common memory or the on board memory of the 

MAP. 

• Attempt to use the Wigner-Ville distribution which has a kernel of one. This 

would eliminate the need for the exponential kernel but increase cross terms in 

the final results. 

 It is also important to note that the SRC can be programmed in a hardware 

language such as VHDL or Verilog. If the CWD algorithm was defined using either of 

these methods the inefficiencies caused by the C compiler would be removed. However, 

this is no guarantee that the program would perform faster. 

 The detection strategy used here is one of three detection strategies that are 

currently designed to run concurrently for real-time processing. The SRC-6 can be 

tailored to process all three channels simultaneously. The MATLAB software does not 

have this feature. Running all three detection strategies on the same computer will have a 

large impact on the overall timing of the system. 

C. RECOMMENDATIONS FOR FUTURE WORK 

 The project of using the SRC-6 as an autonomous LPI detection system should be 

continued in future theses. Specifically the following areas should be addressed: 

• Investigate alternatives in implementing the Choi-Williams algorithm defined 

in this thesis. Review loop reduction techniques and hardware language 

implementation. Introduce windowing functions as defined in [1]. 

• Optimize the use of parallel detection strategies on the SRC-6. With three 

possible detection strategies there is a high probability that there will be ways 

to combine MAP board functions to optimize MAP board usage. For example 



 

 38

both the Choi-Williams distribution and the cyclostationary analysis method 

use an FFT function. This function could be used by both detection strategies. 

• The current preprocessing phase of image analysis has only been configured 

and tested for the quadrature mirror filtering detection strategy. This phase 

must be expanded to include the Choi-Williams Distribution. 

• Review the use of the Wigner-Ville distribution in conjunction with the Choi-

Williams distribution to maximize both the speed and the quality of the 

results. For a military application such as an radar warning receivers, a less 

than optimal result may be sufficient if it means the pilot has more warning 

time (i.e. faster results). For an ELINT application it may be more 

advantageous to use the Choi-Williams distribution to recover more signal 

parameters. 

• The classification algorithms must be expanded to include signal 

characteristics identified by the Choi-Williams Distribution. 
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APPENDIX A. LPI SIGNAL GENERATION 

There were several signals generated by the LPI Toolbox used in this thesis. Each 

signal is described in detail below. Each signal was generated with a signal to noise ratio 

of 0 dB. The addition of noise generates more realistic results without overwhelming the 

graph. 

1)  F_1_7_250_20_0.mat: This signal is an FMCW signal with a carrier 

frequency of 1 kHz and a modulation frequency (bandwidth) of 250 Hz. It 

has a modulation period of 20µs and is sampled at 7 kHz. 

2)  FR_1_7_4_1_0.mat: This signal is a Frank coded polyphase signal that is 

related to frequency modulation and Barker codes. This code has a 

frequency of 1 kHz and has four frequency steps. The four steps leads to a 

period of 16 ms (four squared). There is one cycle per step and it is 

sampled at a rate of 7 kHz. 

3)  C_1_15_5000_0.mat: This signal is comprised of Costas codes that limit 

the amount of interference between frequencies and generate an ideal 

unambiguous range and Doppler measurement. The Costas code used was 

[3000, 2000, 6000, 4000, 5000, 1000] Hz. Each frequency is on for a 

duration of 0.005 seconds and a sampling frequency of 15,057 Hz.   

4)  FSK_PSK_Costas_15_5_0.mat: This signal is a combination of Frequency 

Shift Keying and Phase Shift Keying techniques. This example used a 5-

bit Barker code over the range of each frequency in the Costas sequence 

[3000, 2000, 6000, 4000, 5000, 1000] Hz. 

More information on the use of the LPI Toolbox and the different LPI signals is given in 

[6]. 
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To use these signals in the SRC environment, they were converted to text files using the 

following code. 

 
%% %%%%%%%%%%%%%%%%%%%%% FMCW Code %%%%%%%%%%%%%%%%%%% %% 
load H:\Thesis\Choi\Test_signals\F_1_7_250_20_0.mat 
sig1 = [I Q]; 
save S:\thesis\Test_signals_txt\F_1_7_250_20_0.txt sig1 -ascii -double 
  
%% %%%%%%%%%%%%%%%%%%%%% Frank Code %%%%%%%%%%%%%%%%%%% %% 
load H:\Thesis\Choi\Test_signals\FR_1_7_4_1_0.mat 
sig2 = [I Q]; 
save S:\thesis\Test_signals_txt\FR_1_7_4_1_0.txt sig2 -ascii -double 
  
%% %%%%%%%%%%%%%%%%%%% Costas Code %%%%%%%%%%%%%%%%%%% %% 
load H:\Thesis\Choi\Test_signals\C_1_15_5000_0.mat 
sig3 = [I Q]; 
save S:\thesis\Test_signals_txt\C_1_15_5000_0.txt sig3 -ascii -double 
  
%% %%%%%%%%%%%%%%% FSK/PSK Costas Code %%%%%%%%%%%%%%%% %% 
load H:\Thesis\Choi\Test_signals\FSK_PSK_Costas_15_5_0.mat 
sig4 = [I Q]; 
save S:\thesis\Test_signals_txt\FSK_PSK_Costas_15_5_0.txt sig4 -ascii  
        -double 
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APPENDIX B. CHOI-WILLIAMS DISTRIBUTION C CODE 

A file was generated to contain all the user defined variables. In the case of the C 

code there is only one variable. However to change the length of the vector being 

calculated only the user file needs to be altered. 
/************** userdef.c **************************/ 
#define PI 3.1415926535897932384626433832795 
 
#define N  512 
 
//#define N  256 
//#define N  8 
 
#include <stdio.h> 
#include <math.h> 
#include <time.h> 
#include "fft.c" 
#include "userdef.c" 
#include "high_prec_time.c" 
  
/******* Choi Williams Distribution Computation ******** 
******************************************************** 
* N = length of vector (file) Must be an Integer power * 
*     of two (256 or 512 is recommended).              * 
*                                                      * 
* *data = pointer to input data                        * 
* Data must be I and Q data in two respective columns  * 
*                                                      * 
* Output vector will be NxN                            * 
* Rows represent change in time                        * 
* Columns represent change in frequency                * 
********************************************************/ 
 
int main() 
{ 
 /* Define Variables */ 
 int i,j,k,r,q,P,L,M,n,a,b;   
 
 struct timeval tottime, stime, etime;  
 struct timeval totFFTtime, sFFTtime, eFFTtime;  
 struct timeval totCWDtime, sCWDtime, eCWDtime;  
 
 double sigma,tt,W,c,ffttime,time1,time2; 
 float  Iin[N], Qin[N]; 
 
 /* Define Pointers */ 
 FILE *data; 
 
 double (*temp1)[2],      (*temp2)[2]; 
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 double (*IData),          (*QData); 
 double (*Ishift),         (*Qshift); 
 double (*IX1),            (*QX1); 
 double (*IX2),            (*QX2); 
 double (*Isum),           (*Qsum); 
 double (*IWV)[N],         (*QWV)[N]; 
 double (*IWVweight)[N-1], (*QWVweight)[N-1]; 
 double (*Ikern)[N],       (*Qkern)[N]; 
 double (*IDataOut)[N],    (*QDataOut)[N]; 
 double (*mu),             (*weight)[N]; 
 
/*****************Initialize Variables****************** 
********************************************************/ 
 k = 1;  
 j = 0; 
 P = N/2; 
 M= (2*P)-1; 
 a = -P; 
 b = P-1; 
 ffttime = 0; 
 
/******************** Sigma **************************** 
******************************************************** 
Can use to change the weight of the Choi Williams  
distribution. A large sigma will result in a  
Wigner-Ville Distribution.                             */ 
 
sigma = 1; 
 
/***************** Allocate memory *********************/ 
     IData = malloc(N*sizeof(double)); 
     QData = malloc(N*sizeof(double)); 
 
/****************** Open Data ************************** 
******************************************************** 
Default: Data is stored in a file called  
              Test_signals_txt                         */ 
 
 data  = fopen("Test_signals_txt/INPUT.txt","r"); 
 
 if(data == NULL) 
  { 
   puts("Error opening file."); 
   return(1); 
  } 
 
  fscanf(data,"%f", &Iin[0]);  
  IData[0] = Iin[0]; 
  
  for(i=0; i<((2*N)-1);i++) 
   { 
    if(i % 2 == 1)                        /*IData*/ 
     {  
      fscanf(data, "%f", &Iin[k]); 
      IData[k] = Iin[k]; 
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      k++; 
     } 
    else                                  /*QData*/ 
     { 
      fscanf(data,"%f", &Qin[j]); 
      QData[j] = Qin[j]; 
      j++; 
     } 
   } 
/* Close the file */ 
fclose(data); 
 
/************** Start Time the SRC Code *************** 
 The total time will be from this point to the stage  * 
 right before the output to txt. This is to make as   * 
 fair a comparison between the SRC code, the C code   * 
 and the Matlab code.                                 */ 
 
 gettimeofday(&stime,NULL); 
 
/***** Compute the Wigner-Ville Distribution *********** 
******************************************************** 
The Wigner-Ville Distribution can be used to  
computer the Choi-Williams Distribution. The  
variables IWV and QWV are the NxN matrix output. 
 
First, the data is shifted. 
Second, the data is broken into X1 and X2. 
Lastly, the data is recombined into IWV and QWV.       */ 
 
    /*************** Allocate memory *******************/ 
     Ishift = malloc(N*sizeof(double)); 
     Qshift = malloc(N*sizeof(double)); 
     IX1    = malloc(N*sizeof(double)); 
     QX1    = malloc(N*sizeof(double)); 
     IX2    = malloc(N*sizeof(double)); 
     QX2    = malloc(N*sizeof(double)); 
     IWV    = malloc(N*N*sizeof(double)); 
     QWV    = malloc(N*N*sizeof(double)); 
     Ikern  = malloc(N*N*sizeof(double)); 
     Qkern  = malloc(N*N*sizeof(double)); 
 
for(i=a; i<b+1; i++) 
 { 
/********************* Shift *************************** 
 Shift both I and Q                                    */ 
 
  if(i>= 0) 
   { 
    for(k=0; k<i; k++) 
     { 
      Ishift[k] = 0; 
      Qshift[k] = 0; 
     } 
    for (k=i; k<N; k++) 
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     { 
      Ishift[k] = IData[k-i]; 
      Qshift[k] = QData[k-i]; 
     } 
   }  
 else 
   { 
    for(k=0; k<N+i; k++) 
     { 
      Ishift[k] = IData[k-i]; 
      Qshift[k] = QData[k-i]; 
     } 
    for(k=N+i; k<N; k++) 
     { 
      Ishift[k] = 0; 
      Qshift[k] = 0; 
     } 
   } 
/**************** End Shift ****************************/ 
/************ Determine X1 and X2 **********************/ 
 for(k=0; k<P; k++) 
  { 
   IX1[k] = Ishift[P+k-1]; 
   QX1[k] = Qshift[P+k-1]; 
   IX2[k] = Ishift[P-1-k]; 
   QX2[k] = -Qshift[P-1-k]; 
  } 
 
 IX1[k] = 0; 
 QX1[k] = 0; 
 IX2[k] = 0; 
 QX2[k] = 0; 
 
 for(k=(P+1); k<N; k++) 
  { 
   IX1[k] = Ishift[k-P-1]; 
   QX1[k] = Qshift[k-P-1]; 
   IX2[k] = Ishift[M+(M-P+1)-k]; 
   QX2[k] = -Qshift[M+(M-P+1)-k]; 
  } 
 
/****************** End X1 and X2 **********************/ 
/******************** Determine WV *********************/ 
 for (k=0; k<N; k++) 
  { 
   IWV[i+P][k] = ((IX1[k]*IX2[k])-(QX1[k]*QX2[k])); 
   QWV[i+P][k] = -((IX1[k]*QX2[k])+(IX2[k]*QX1[k])); 
  } 
/********************* End WV **************************/ 
 } 
 
    /*************** Release memory ********************/ 
     free(IX2); 
     free(QX2); 
     free(IX1); 
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     free(QX1); 
     free(Ishift); 
     free(Qshift); 
 
/********** End Wigner-Ville Distribution ************** 
********************************************************/ 
 gettimeofday(&sCWDtime,NULL); 
/****** Compute the Choi-Williams Distribution ********* 
******************************************************** 
The Choi-Williams kernel is a summation of weighted WV  
outputs.                                               */ 
 
/****************** Determine mu *********************** 
 Mu is used for array indexing in determining the  
 weighting function.                                   */ 
 
    /*************** Allocate memory *******************/ 
     mu = malloc(N*sizeof(double)); 
 
for(k=0; k<N; k++) 
 mu[k]=b-k; 
 
/******************** End mu ***************************/ 
/************* Determine weight ************************ 
 These nested for loops determine the weighting  
 function in the Choi-Williams Distribution.           */ 
 
    /*************** Allocate memory *******************/ 
     weight    = malloc(N*N*sizeof(double)); 
     Isum      = malloc(N*sizeof(double)); 
     Qsum      = malloc(N*sizeof(double)); 
     IWVweight = malloc(N*N*sizeof(double)); 
     QWVweight = malloc(N*N*sizeof(double)); 
 
 c = sigma/(4*PI); 
  
for(L=0; L<N; L++) 
 { 
  for(n=1; n<P; n++) 
   { 
    for(i=0; i<N; i=i+4) 
     { 
      W = sqrt(c/(n*n)) 
          *exp((-((mu[i]-(L-P))*(mu[i]-(L-P)))*sigma/(4*(n*n)))); 
      weight[i][n] = W; 
      weight[i][N-n] = W; 
 
 
      W = sqrt(c/(n*n)) 
          *exp((-((mu[i+1]-(L-P))*(mu[i+1]-(L-P)))*sigma/(4*(n*n)))); 
      weight[i+1][n] = W; 
      weight[i+1][N-n] = W; 
 
 
      W = sqrt(c/(n*n)) 
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          *exp((-((mu[i+2]-(L-P))*(mu[i+2]-(L-P)))*sigma/(4*(n*n)))); 
      weight[i+2][n] = W; 
      weight[i+2][N-n] = W; 
 
 
      W = sqrt(c/(n*n)) 
          *exp((-((mu[i+3]-(L-P))*(mu[i+3]-(L-P)))*sigma/(4*(n*n)))); 
      weight[i+3][n] = W; 
      weight[i+3][N-n] = W; 
 
     } //End i loop 
   }//End n loop 
 
  for(j=0; j<N-1; j++) //columns 
   { 
    Isum[j] = 0; 
    Qsum[j] = 0; 
    for(k=0; k<N; k++) //rows 
     { 
      IWVweight[k][j] = weight[k][j+1] * IWV[k][j+1]; 
      QWVweight[k][j] = weight[k][j+1] * QWV[k][j+1]; 
      Isum[j] = Isum[j] + IWVweight[k][j]; 
      Qsum[j] = Qsum[j] + QWVweight[k][j]; 
     } //End k loop 
    } //End j loop 
 
/******************* End weight ************************/ 
/**************** Determine kernel *********************/ 
 
   for(r=0; r<N; r++) 
    { 
     //printf("L = %i; r = %i; N=%i\n",L,r,N); 
     if(r==0) 
       {  
        Ikern[r][L] = IWV[N-L-1][r]; 
        Qkern[r][L] = 0;  
       } 
     else 
       { 
        Ikern[r][L] = Isum[r-1]; 
        Qkern[r][L] = -Qsum[r-1]; 
       } 
     } 
 
 } //End L loop 
 
    /*************** Release memory ********************/ 
     free(IWVweight); 
     free(QWVweight); 
     free(Isum); 
     free(Qsum); 
     free(weight); 
     free(mu);      
     free(IWV); 
     free(QWV); 
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/********** End Choi-Williams Distribution *************/ 
 gettimeofday(&eCWDtime,NULL); 
/***************** Determine FFT *********************** 
******************************************************** 
The FFT algorithm is for an Nx1 array so it used in a  
loop to calculate the FFT for an NxN array.            */ 
 
    /*************** Allocate memory ******************* 
     This is to determine the FFT.                     */ 
     temp1    = malloc(2*N*sizeof(double)); 
     temp2    = malloc(2*N*sizeof(double)); 
     IDataOut = malloc(N*N*sizeof(double)); 
     QDataOut = malloc(N*N*sizeof(double)); 
 
for (j=0; j<N; j++) 
 { 
  for (i=0; i<N; i++) 
   { 
    temp1[i][0] = Ikern[i][j]; 
    temp1[i][1] = Qkern[i][j]; 
   } 
 gettimeofday(&sFFTtime,NULL); 
  fft(N,temp1,temp2); 
 gettimeofday(&eFFTtime,NULL); 
 
   tt = timeval_subtract(&totFFTtime, &eFFTtime, &sFFTtime); 
   time2 = totFFTtime.tv_sec + totFFTtime.tv_usec*1e-6; 
   time1 = time2+ffttime; 
   ffttime = time1; 
 
  for (i=0; i<N; i++) 
   { 
    IDataOut[i][j] = 2*temp2[i][0]; 
    QDataOut[i][j] = 2*temp2[i][1]; 
   } 
 } // End j loop 
 
    /*************** Release memory ********************/ 
     free(temp1); 
     free(temp2); 
     free(Ikern); 
     free(Qkern); 
 
/********************** End FFT ************************/ 
/**************** End Time the C Code ****************** 
 The total time will be from this point to the stage   * 
 right before the output to txt. This is to make as    * 
 fair a comparison between the SRC code, the C code    * 
 and the Matlab code.                                  */ 
 
 gettimeofday(&etime,NULL); 
 tt = timeval_subtract(&tottime, &etime, &stime); 
printf("Total time was %4.6f sec\n",         
        tottime.tv_sec + tottime.tv_usec/1000000.0); 
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 tt = timeval_subtract(&totCWDtime, &eCWDtime, &sCWDtime); 
printf("Total CWD kernel time was %4.6f sec\n",         
        totCWDtime.tv_sec + totCWDtime.tv_usec/1000000.0); 
 
printf("Total FFT time was %4.6f sec\n",ffttime); 
 
/**************** Output Data ************************** 
******************************************************** 
This outputs the final result to a text file called  
out.txt that can be pulled into Matlab and graphed.    */ 
 data  = fopen("out.txt","w"); 
 
if(data == NULL) 
 { 
  puts("Error creating file."); 
  return(1); 
 } 
 
for (r=0; r<N; r++) 
 { 
  for (q=0; q<N-1; q++) 
    fprintf(data, "%12f\t", IDataOut[r][q]); 
    fprintf(data, "%12f\n", IDataOut[r][q]); 
 } 
 
/* Close the file */ 
fclose(data); 
 
puts("Data saved to out.txt"); 
 
 
/***************** End Output ************************** 
********************************************************/ 
 
/***************** Release memory **********************/ 
free(IData); 
free(QData); 
free(IDataOut); 
free(QDataOut); 
 
return(0); 
} // End main 
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APPENDIX C. FFT.C C CODE 

/*---------------------------------------------------------------------------- 
   fft.c - fast Fourier transform and its inverse (both recursively) 
   Copyright (C) 2004, Jerome R. Breitenbach.  All rights reserved. 
 
   The author gives permission to anyone to freely copy, distribute, and use 
   this file, under the following conditions: 
      - No changes are made. 
      - No direct commercial advantage is obtained. 
      - No liability is attributed to the author for any damages incurred. 
  ----------------------------------------------------------------------------*/ 
 
/****************************************************************************** 
 * This file defines a C function fft that, by calling another function       * 
 * fft_rec (also defined), calculates an FFT recursively.  Usage:             * 
 *   fft(N, x, X);                                                            * 
 * Parameters:                                                                * 
 *   N: number of points in FFT (must equal 2^n for some integer n >= 1)      * 
 *   x: pointer to N time-domain samples given in rectangular form (Re x,     * 
 *      Im x)                                                                 * 
 *   X: pointer to N frequency-domain samples calculated in rectangular form  * 
 *      (Re X, Im X)                                                          * 
 * Similarly, a function ifft with the same parameters is defined that        * 
 * calculates an inverse FFT (IFFT) recursively.  Usage:                      * 
 *   ifft(N, x, X);                                                           * 
 * Here, N and X are given, and x is calculated.                              * 
 ******************************************************************************/ 
 
#include <stdlib.h> 
#include <math.h> 
 
/* macros */ 
#define TWO_PI (6.2831853071795864769252867665590057683943L) 
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/* function prototypes */ 
void fft(int N, double (*x)[2], double (*X)[2]); 
void fft_rec(int N, int offset, int delta, double (*x)[2], double (*X)[2], double (*XX)[2]); 
void ifft(int N, double (*x)[2], double (*X)[2]); 
 
/* FFT */ 
void fft(int N, double (*x)[2], double (*X)[2]) 
{ 
  /* Declare a pointer to scratch space. */ 
  double (*XX)[2] = malloc(2 * N * sizeof(double)); 
 
  /* Calculate FFT by a recursion. */ 
  fft_rec(N, 0, 1, x, X, XX); 
 
  /* Free memory. */ 
  free(XX); 
} 
/* FFT recursion */ 
void fft_rec(int N, int offset, int delta, 
             double (*x)[2], double (*X)[2], double (*XX)[2]) 
{ 
  int N2 = N/2;            /* half the number of points in FFT */ 
  int k;                   /* generic index */ 
  double cs, sn;           /* cosine and sine */ 
  int k00, k01, k10, k11;  /* indices for butterflies */ 
  double tmp0, tmp1;       /* temporary storage */ 
 
  if(N != 2)  /* Perform recursive step. */ 
    { 
      /* Calculate two (N/2)-point DFT's. */ 
      fft_rec(N2, offset, 2*delta, x, XX, X); 
      fft_rec(N2, offset+delta, 2*delta, x, XX, X); 
 
      /* Combine the two (N/2)-point DFT's into one N-point DFT. */ 
      for(k=0; k<N2; k++) 
        { 
          k00 = offset + k*delta;    k01 = k00 + N2*delta; 
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          k10 = offset + 2*k*delta;  k11 = k10 + delta; 
          cs = cos(TWO_PI*k/(double)N); sn = sin(TWO_PI*k/(double)N); 
          tmp0 = cs * XX[k11][0] + sn * XX[k11][1]; 
          tmp1 = cs * XX[k11][1] - sn * XX[k11][0]; 
          X[k01][0] = XX[k10][0] - tmp0; 
          X[k01][1] = XX[k10][1] - tmp1; 
          X[k00][0] = XX[k10][0] + tmp0; 
          X[k00][1] = XX[k10][1] + tmp1; 
        } 
    } 
  else  /* Perform 2-point DFT. */ 
    { 
      k00 = offset; k01 = k00 + delta; 
      X[k01][0] = x[k00][0] - x[k01][0]; 
      X[k01][1] = x[k00][1] - x[k01][1]; 
      X[k00][0] = x[k00][0] + x[k01][0]; 
      X[k00][1] = x[k00][1] + x[k01][1]; 
    } 
} 
/* IFFT */ 
void ifft(int N, double (*x)[2], double (*X)[2]) 
{ 
  int N2 = N/2;       /* half the number of points in IFFT */ 
  int i;              /* generic index */ 
  double tmp0, tmp1;  /* temporary storage */ 
 
  /* Calculate IFFT via reciprocity property of DFT. */ 
  fft(N, X, x); 
  x[0][0] = x[0][0]/N;    x[0][1] = x[0][1]/N; 
  x[N2][0] = x[N2][0]/N;  x[N2][1] = x[N2][1]/N; 
  for(i=1; i<N2; i++) 
    { 
      tmp0 = x[i][0]/N;       tmp1 = x[i][1]/N; 
      x[i][0] = x[N-i][0]/N;  x[i][1] = x[N-i][1]/N; 
      x[N-i][0] = tmp0;       x[N-i][1] = tmp1; 
    } 
} 
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APPENDIX D. PLOTTING M CODE 

%% %%%%%%%%%%%%%%%%%%%%% mplot.m %%%%%%%%%%%%%%%%%%%%%%%% %% 
% This m-file takes the resulting .mat file from LPIT and  % 
% runs the Choi-Williams Distribution (CWD) on N samples   % 
% of the file. N must be a power of 2 and is typically 256 % 
% or 512. These results are then plotted.                  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%clear, clc, close all 
  
%% %%%%%%%%%%%%%%%%%%%% Load File %%%%%%%%%%%%%%%%%%%%%% %% 
% Load data file for analysis 
%%FMCW F_1_7_250_20_0 
%load H:\Thesis\Choi\Test_signals\F_1_7_250_20_0.mat 
%fs = 7000; 
%axis([0 0.07 500 1500]); 
  
%%%%%% For Testing %%%%%%%%%%%%%%%%%%%%%%%% 
%%PSK (Frank) FR_1_7_8_1_0 
%load H:\Thesis\Choi\FR_1_7_8_1_0.mat  
%fs = 7000; 
%axis([0 0.07 500 1500]); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%PSK (Frank) FR_1_7_4_1_0 
%load H:\Thesis\Choi\Test_signals\FR_1_7_4_1_0.mat  
%fs = 7000; 
%axis([0 0.07 500 1500]); 
  
%%FSK (Costas)C_1_15_5000_0 
load H:\Thesis\Choi\Test_signals\C_1_15_5000_0.mat 
fs = 15057; 
%axis([0 0.033 0 7500]); 
  
%%FSK/PSK FSK_PSK_Costas_15_5_0 
%load H:\Thesis\Choi\Test_signals\FSK_PSK_Costas_15_5_0.mat 
%fs = 15057; 
%axis([0 0.033 0 7500]); 
  
%% %%%%%%%%%%%%%%% Set Up Variables %%%%%%%%%%%%%%%%%%% %% 
N = 512; 
I = I(1:N); 
Q = Q(1:N); 
x=(I+j*Q)'; 
c=length(x); 
  
%% %%%%%%%%%%%%% Set Up for Plot Functions %%%%%%%%%%%%% %% 
T=1/fs; 
freqp=0:fs/c:fs-fs/c;         %% Frequency 
freqp=freqp/2; 
time=0:T:c*T-T;               %% Time 
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%% %% Run the Choi Williams Distribution Computation %% %% 
t1=clock;   %% This starts the timer 
W = choiwilliams(x); 
t2=clock;   %% This stops the timer 
disp('Total Time') 
e = etime(t2, t1) 
%% %%%%%%%%%%%%%%%%%%% Plot Results %%%%%%%%%%%%%%%%%%% %% 
%figure(14) 
%mesh(time,freqp,W); shading interp; 
%xlabel('Time (s)'); 
%ylabel('Frequency (Hz)'); 
%zlabel('Magnitude (V)'); 
%view(90,0) 
  
%figure(15) 
%mesh(time,freqp,W); shading interp; 
%xlabel('Time (s)'); 
%ylabel('Frequency (Hz)'); 
%zlabel('Magnitude (V)'); 
%view(0,0) 
  
%figure(16) 
%mesh(time,freqp,W); shading interp; 
%xlabel('Time (s)'); 
%ylabel('Frequency (Hz)'); 
%zlabel('Magnitude (V)'); 
  
figure(17) 
mesh(time,freqp,W); shading interp; box on; 
xlabel('Time (s)'); 
ylabel('Frequency (Hz)'); 
zlabel('Magnitude (V)'); 
view(0,90) 
% The axis may have to be adjusted based on the LPI signal being 
analyized. 
axis([0 0.033 0 7500]);  
  
%figure(18) 
% This figure is generated using the contour command instead of the 
mesh 
% command which generates a slightly different graph. 
%maxi = max(max(W)); 
%mini = min(min(W)); 
%lev = linspace(mini,maxi,65); 
%contour(time,freqp,W,lev) 
%ylabel('Frequency (Hz)'); 
%xlabel('Time (s)'); 
%zlabel('Magnitude (V)'); 
%axis([0 0.033 0 7500]); 
  
% End M-File 
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%% %%%%%%%%%%%%%%%%%%%%% cplot.m %%%%%%%%%%%%%%%%%%%%%%%% %% 
% This m-file takes the resulting .txt file from the       % 
% the Choi-Williams Distitribution (CWD) of N samples.     % 
% The results are then plotted using the mesh and contour  % 
% functions.                                               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear, clc, close all 
  
N=512; 
%% %%%%%%%%%%%%%%%%%%%% Load File %%%%%%%%%%%%%%%%%%%%%% %% 
% The txt file must be changed for each C code output. 
  
%% FMCW F_1_7_250_20_0 
%load -ascii H:\Thesis\Choi\C_output\F_1_7_250_20_0_Cout_512SRC.txt  
%fs = 7000; 
%W=N*F_1_7_250_20_0_Cout_512SRC; 
  
%% PSK (Frank) FR_1_7_4_1_0 
%load -ascii H:\Thesis\Choi\C_output\FR_1_7_4_1_0_Cout_512SRC.txt 
%fs = 7000; 
%W=N*FR_1_7_4_1_0_Cout_512SRC; 
  
%% FSK (Costas)C_1_15_5000_0 
%load -ascii H:\Thesis\Choi\C_output\C_1_15_5000_0_Cout_512SRC.txt 
%fs = 15057; 
%W=N*C_1_15_5000_0_Cout_512SRC; 
%axis([0 0.033 0 7500]); 
  
%% FSK/PSK FSK_PSK_Costas_15_5_0 
load -ascii 
H:\Thesis\Choi\C_output\FSK_PSK_Costas_15_5_0_Cout_512SRCHW.txt 
fs = 15057; 
W=N*FSK_PSK_Costas_15_5_0_Cout_512SRCHW; 
%axis([0 0.033 0 7500]); 
  
%% %%%%%%%%%%%%% Set Up for Plot Functions %%%%%%%%%%%%% %% 
c=length(W);  
  
T=1/fs; 
freqp=0:fs/c:fs-fs/c;         %% Frequency 
freqp=freqp/2; 
time=0:T:c*T-T;               %% Time 
  
%% %%%%%%%%%%%%%%%%%%% Plot Results %%%%%%%%%%%%%%%%%%% %% 
%figure(14) 
%mesh(time,freqp,W); shading interp; 
%xlabel('Time (s)'); 
%ylabel('Frequency (Hz)'); 
%zlabel('Magnitude (V)'); 
%view(90,0) 
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%figure(15) 
%mesh(time,freqp,W); shading interp; 
%xlabel('Time (s)'); 
%ylabel('Frequency (Hz)'); 
%zlabel('Magnitude (V)'); 
%view(0,0) 
  
%figure(16) 
%mesh(time,freqp,W); shading interp; 
%xlabel('Time (s)'); 
%ylabel('Frequency (Hz)'); 
%zlabel('Magnitude (V)'); 
  
figure(17) 
mesh(time,freqp,W); shading interp; box on; 
xlabel('Time (s)'); 
ylabel('Frequency (Hz)'); 
zlabel('Magnitude (V)'); 
view(0,90) 
% The axis may have to be adjusted based on the LPI signal being 
analyized. 
axis([0 0.033 0 7500]);  
  
%figure(8) 
%maxi = max(max(W)); 
%mini = min(min(W)); 
%lev = linspace(mini,maxi,65); 
%contour(time,freqp,W,lev) 
%ylabel('Frequency (Hz)'); 
%xlabel('Time (s)'); 
%zlabel('Magnitude (V)'); 
%title('Contour of CWD') 
  
% End M-File 
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APPENDIX E. SRC MAIN CODE 

All user defined variables were included in a separate file. Only the user defined 

file must be altered to change the vector length. Note that N and n2 are paired together. 
#define PI 3.1415926535897932384626433832795 
 
#define N  512 
#define n2 9 
 
//#define N  256 
//#define n2 8 
 
 
#include <stdio.h> 
#include <math.h> 
#include <map.h> 
#include <time.h> 
#include <libmap.h> 
#include "userdef.c" 
#include "high_prec_time.c" 
 
/******* Choi Williams Distribution Computation ******** 
******************************************************** 
* N = length of vector (file) Must be an Integer power * 
*     of two (256 or 512 is recommended).              * 
*                                                      * 
* *data = pointer to input data                        * 
* Data must be I and Q data in two respective columns  * 
*                                                      * 
* Output vector will be NxN                            * 
* Rows represent change in time                        * 
* Columns represent change in frequency                * 
********************************************************/ 
 
void fft_map (float input[],float twiddle[], 
             float output[],int n,int frflag,  
             int64_t* t_dma, int64_t* t_fwd,  
             int64_t* t_call, int map); 
 
int main() 
{ 
 /* Define Variables */ 
 int i,j,k,r,q,P,L,M,n,a,b,nmap;   
 
 double sigma,W,cn; 
 float  Iin[N], Qin[N]; 
 
 /* Define Pointers */ 
 FILE *data; 
 
 double (*IData),          (*QData); 



 

 58

 double (*Ishift),         (*Qshift); 
 double (*IX1),            (*QX1); 
 double (*IX2),            (*QX2); 
 double (*Isum),           (*Qsum); 
 double (*IWV)[N],         (*QWV)[N]; 
 double (*IWVweight)[N-1], (*QWVweight)[N-1]; 
 double (*Ikern)[N],       (*Qkern)[N]; 
 double (*IDataOut)[N],    (*QDataOut)[N]; 
 double (*mu),             (*weight)[N]; 
 
/******************* FFT Variables ******************** 
 These variables are only used for the FFT.           */ 
 
int  frflag, nbytes, npoint; 
float  *twiddle; 
float  (*tempin), (*tempout); 
double  rad; 
 
/***************** Timing Variables ******************* 
 These variables are only used for timing.            */ 
 
 struct timeval tottime, stime, etime;  
 struct timeval totffttime, sffttime, effttime; 
 
 float tt,ffttime,time1,time2; 
 
 int64_t t_dma, t_fwd, t_call; 
 float ft_dma, ft_fwd, ft_call, ftot_dma, ftot_fwd, ftot_call; 
 
 ffttime   = 0; 
 ftot_dma  = 0; 
 ftot_fwd  = 0; 
 ftot_call = 0; 
  
/**************** Initialize Variables ***************** 
********************************************************/ 
 k = 1;  
 j = 0; 
 P = N/2; 
 M = (2*P)-1; 
 a = -P; 
 b = P-1; 
 
/******************** Sigma **************************** 
******************************************************** 
Can use to change the weight of the Choi Williams  
distribution. A large sigma will result in a  
Wigner-Ville Distribution.                             */ 
 
sigma = 1; 
 
/***************** Allocate memory *********************/ 
     IData = Cache_Aligned_Allocate(N*sizeof(double)); 
     QData = Cache_Aligned_Allocate(N*sizeof(double)); 
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/****************** Open Data ************************** 
******************************************************** 
Default: Data is stored in a file called  
              Test_signals_txt                         */ 
 
 data  = fopen("Test_signals_txt/INPUT.txt","r"); 
 
 if(data == NULL) 
  { 
   puts("Error opening file."); 
   return(1); 
  } 
  fscanf(data,"%f", &Iin[0]);  
  IData[0] = Iin[0]; 
  
  for(i=0; i<((2*N)-1);i++) 
   { 
    if(i % 2 == 1) /*Odd data is QData*/ 
     {  
      fscanf(data, "%f", &Iin[k]); 
      IData[k] = Iin[k]; 
      k++; 
     } 
    else 
     { 
      fscanf(data,"%f", &Qin[j]); 
      QData[j] = Qin[j]; 
      j++; 
     } 
   } 
 
/* Close the file */ 
fclose(data); 
 
/************** Start Time the SRC Code *************** 
 The total time will be from this point to the stage  * 
 right before the output to txt. This is to make as   * 
 fair a comparison between the SRC code, the C code   * 
 and the MATLAB code.                                 */ 
 
 gettimeofday(&stime,NULL); 
 
/***** Compute the Wigner-Ville Distribution *********** 
******************************************************** 
The Wigner-Ville Distribution can be used to  
computer the Choi-Williams Distribution. The  
variables IWV and QWV are the NxN matrix output. 
 
First, the data is shifted. 
Second, the data is broken into X1 and X2. 
Lastly, the data is recombined into IWV and QWV.       */ 
 
    /*************** Allocate memory *******************/ 
     Ishift = Cache_Aligned_Allocate(N*sizeof(double)); 
     Qshift = Cache_Aligned_Allocate(N*sizeof(double)); 
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     IX1    = Cache_Aligned_Allocate(N*sizeof(double)); 
     QX1    = Cache_Aligned_Allocate(N*sizeof(double)); 
     IX2    = Cache_Aligned_Allocate(N*sizeof(double)); 
     QX2    = Cache_Aligned_Allocate(N*sizeof(double)); 
     IWV    = Cache_Aligned_Allocate(N*N*sizeof(double)); 
     QWV    = Cache_Aligned_Allocate(N*N*sizeof(double)); 
     Ikern  = Cache_Aligned_Allocate(N*N*sizeof(double)); 
     Qkern  = Cache_Aligned_Allocate(N*N*sizeof(double)); 
 
for(i=a; i<b+1; i++) 
 { 
/********************* Shift *************************** 
 Shift both I and Q                                    */ 
 
  if(i>= 0) 
   { 
    for(k=0; k<i; k++) 
     { 
      Ishift[k] = 0; 
      Qshift[k] = 0; 
     } 
    for (k=i; k<N; k++) 
     { 
      Ishift[k] = IData[k-i]; 
      Qshift[k] = QData[k-i]; 
     } 
   }  
 else 
   { 
    for(k=0; k<N+i; k++) 
     { 
      Ishift[k] = IData[k-i]; 
      Qshift[k] = QData[k-i]; 
     } 
    for(k=N+i; k<N; k++) 
     { 
      Ishift[k] = 0; 
      Qshift[k] = 0; 
     } 
   } 
/**************** End Shift ****************************/ 
/************ Determine X1 and X2 **********************/ 
 for(k=0; k<P; k++) 
  { 
   IX1[k] = Ishift[P+k-1]; 
   QX1[k] = Qshift[P+k-1]; 
   IX2[k] = Ishift[P-1-k]; 
   QX2[k] = -Qshift[P-1-k]; 
  } 
 
 IX1[k] = 0; 
 QX1[k] = 0; 
 IX2[k] = 0; 
 QX2[k] = 0; 
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 for(k=(P+1); k<N; k++) 
  { 
   IX1[k] = Ishift[k-P-1]; 
   QX1[k] = Qshift[k-P-1]; 
   IX2[k] = Ishift[M+(M-P+1)-k]; 
   QX2[k] = -Qshift[M+(M-P+1)-k]; 
  } 
 
/****************** End X1 and X2 **********************/ 
/******************** Determine WV *********************/ 
 for (k=0; k<N; k++) 
  { 
   IWV[i+P][k] = ((IX1[k]*IX2[k])-(QX1[k]*QX2[k])); 
   QWV[i+P][k] = -((IX1[k]*QX2[k])+(IX2[k]*QX1[k])); 
  } 
 
/********************* End WV **************************/ 
 } 
 
    /*************** Release memory ********************/ 
     free(IX2); 
     free(QX2); 
     free(IX1); 
     free(QX1); 
     free(Ishift); 
     free(Qshift); 
 
/********** End Wigner-Ville Distribution **************/ 
/****** Compute the Choi-Williams Distribution ********* 
******************************************************** 
The Choi-Williams kernel is a summation of weighted WV  
outputs.                                               */ 
 
/****************** Determine mu *********************** 
 Mu is used for array indexing in determining the  
 weighting function.                                   */ 
 
    /*************** Allocate memory *******************/ 
     mu = Cache_Aligned_Allocate(N*sizeof(double)); 
 
for(k=0; k<N; k++) 
 mu[k]=b-k; 
 
/******************** End mu ***************************/ 
/************* Determine weight ************************ 
 These nested for loops determine the weighting  
 function in the Choi-Williams Distribution.           */ 
 
    /*************** Allocate memory *******************/ 
     weight    = Cache_Aligned_Allocate(N*N*sizeof(double)); 
     Isum      = Cache_Aligned_Allocate(N*sizeof(double)); 
     Qsum      = Cache_Aligned_Allocate(N*sizeof(double)); 
     IWVweight = Cache_Aligned_Allocate(N*N*sizeof(double)); 
     QWVweight = Cache_Aligned_Allocate(N*N*sizeof(double)); 
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 cn = sigma/(4*PI); 
  
  for(L=0; L<N; L++) 
   { 
    for(n=1; n<P; n++) 
     { 
      for(i=0; i<N; i=i+4) 
       { 
        W = sqrt(cn/(n*n)) 
            *exp((-((mu[i]-(L-P))*(mu[i]-(L-P)))*sigma/(4*(n*n)))); 
        weight[i][n] = W; 
        weight[i][N-n] = W; 
 
        W = sqrt(cn/(n*n)) 
            *exp((-((mu[i+1]-(L-P))*(mu[i+1]-(L-P)))*sigma/(4*(n*n)))); 
        weight[i+1][n] = W; 
        weight[i+1][N-n] = W; 
 
        W = sqrt(cn/(n*n)) 
            *exp((-((mu[i+2]-(L-P))*(mu[i+2]-(L-P)))*sigma/(4*(n*n)))); 
        weight[i+2][n] = W; 
        weight[i+2][N-n] = W; 
 
        W = sqrt(cn/(n*n)) 
            *exp((-((mu[i+3]-(L-P))*(mu[i+3]-(L-P)))*sigma/(4*(n*n)))); 
        weight[i+3][n] = W; 
        weight[i+3][N-n] = W; 
       } //End i loop 
     }//End n loop 
 
    for(j=0; j<N-1; j++) //columns 
     { 
      Isum[j] = 0; 
      Qsum[j] = 0; 
      for(k=0; k<N; k++)//rows 
       { 
        IWVweight[k][j] = weight[k][j+1] * IWV[k][j+1]; 
        QWVweight[k][j] = weight[k][j+1] * QWV[k][j+1]; 
        Isum[j] = Isum[j] + IWVweight[k][j]; 
        Qsum[j] = Qsum[j] + QWVweight[k][j]; 
       } //End k loop 
     } //End j loop 
 
/******************* End weight ************************/ 
/**************** Determine kernel *********************/ 
 
   for(r=0; r<N; r++) 
    { 
     //printf("L = %i; r = %i; N=%i\n",L,r,N); 
     if(r==0) 
       {  
        Ikern[r][L] = IWV[N-L-1][r]; 
        Qkern[r][L] = 0;  
       } 
     else 
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       { 
        Ikern[r][L] = Isum[r-1]; 
        Qkern[r][L] = -Qsum[r-1]; 
       } 
     } 
 
 } //End L loop 
 
    /*************** Release memory ********************/ 
     free(IWVweight); 
     free(QWVweight); 
     free(Isum); 
     free(Qsum); 
     free(weight); 
     free(mu);      
     free(IWV); 
     free(QWV); 
 
/********** End Choi-Williams Distribution *************/ 
/***************** Determine FFT *********************** 
******************************************************** 
The FFT algorithm is for an Nx1 array so it used in a  
loop to calculate the FFT for an NxN array.            */ 
 
    /*************** Allocate memory *******************/ 
     frflag = 1;  //does an FFT (vs. an IFFT) 
     npoint = 1 << n2; 
     nbytes = npoint*8; 
 
     tempin   = (float *)Cache_Aligned_Allocate(nbytes); 
     tempout  = (float *)Cache_Aligned_Allocate(nbytes); 
     IDataOut = Cache_Aligned_Allocate(N*N*sizeof(double)); 
     QDataOut = Cache_Aligned_Allocate(N*N*sizeof(double)); 
 
/*************** Build Twiddle Table ******************* 
This table is used in the FFT.                         */ 
 
   nbytes = npoint*4; 
   twiddle = (float *)Cache_Aligned_Allocate(nbytes); 
 
   i=0; 
   for(j=0; j< npoint/2; j++) 
     { 
      rad = 2.0*PI*((double)j/(double)npoint); 
      twiddle[i] = cos(rad); 
      twiddle[i+1] = -sin(rad); 
      i+=2; 
     }  
 
/**************** End Twiddle Table ********************/ 
/******************* Allocate MAP ********************** 
This is to allocate the MAP.                           */ 
 
nmap = 1; 
if (map_allocate (nmap)) 
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 { 
  fprintf (stdout, "Map allocation falied.\n"); 
  exit(1); 
 } 
nmap = 0; 
 
/**************** End Allocate MAP *********************/ 
for (j=0; j<N; j++) 
 { 
 
/*************** Arrange Data for FFT ****************** 
 The data needs to be in [i,q,i,q,etc.] format.        */ 
  k= 0; 
  for(i=0;i<N;i++)  
   { 
    tempin[k] = Ikern[i][j]; 
    tempin[k+1] = Qkern[i][j]; 
    k+=2; 
   } 
 
/**************** Perform FFT Algorithm ****************/ 
  
   gettimeofday(&sffttime,NULL); 
 
   fft_map(tempin, twiddle, tempout, n2, frflag, 
            &t_dma, &t_fwd, &t_call, nmap); 
 
   gettimeofday(&effttime,NULL); 
 
   tt = timeval_subtract(&totffttime, &effttime, &sffttime); 
   time2 = totffttime.tv_sec + totffttime.tv_usec*1e-6; 
   time1 = time2+ffttime; 
   ffttime = time1; 
 
    ft_dma  = t_dma  *1e-8; 
    ft_fwd  = t_fwd  *1e-8; 
    ft_call = t_call *1e-8; 
    ftot_dma = ftot_dma + ft_dma; 
    ftot_fwd = ftot_fwd + ft_fwd; 
    ftot_call = ftot_call + ft_call; 
 
/************* Arrange Data for Output ***************** 
 The data needs to be in N X N format.                 */ 
  k=0; 
  for (i=0; i<N; i++) 
   { 
    IDataOut[i][j] = 2*tempout[k]; 
    QDataOut[i][j] = 2*tempout[k+1]; 
    k+=2; 
   } 
 } // End j loop 
 
/********************* Free MAP ************************ 
 This is to free the MAP.                              */ 
nmap = 1; 
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if (map_free (nmap)) 
 { 
  fprintf (stdout, "Map deallocation falied.\n"); 
  exit(1); 
 }  
 
/****************** End Free MAP ***********************/ 
/***************** Release memory **********************/ 
     free(tempin); 
     free(tempout); 
     free(Ikern); 
     free(Qkern); 
 
/********************** End FFT ************************/ 
/*************** End Time the SRC Code ***************** 
 The total time will be from this point to the stage   * 
 right before the output to txt. This is to make as    * 
 fair a comparison between the SRC code, the C code    * 
 and the MATLAB code.                                  */ 
 
 gettimeofday(&etime, NULL); 
 tt = timeval_subtract(&tottime, &etime, &stime); 
 time1 = tottime.tv_sec+ tottime.tv_usec*1e-6; 
 
 printf("Total SRC time = %10.8f seconds.\n", time1); 
 printf("Total MAP time = %10.8f seconds \n", ftot_call); 
 printf("      DMA time = %10.8f seconds \n", ftot_dma); 
 printf("      FFT time = %10.8f seconds \n", ftot_fwd); 
 printf("     Call Time = %10.8f seconds.\n", ffttime - ftot_call); 
 
 printf("Total time excluding data loads was %4.6f seconds.\n", time1 - 
(ffttime-ftot_call)); 
 
/**************** Output Data ************************** 
******************************************************** 
This outputs the final result to a text file called  
out.txt that can be pulled into MATLAB and graphed.    */ 
 data  = fopen("out.txt","w"); 
 
if(data == NULL) 
 { 
  puts("Error creating file."); 
  return(1); 
 } 
for (r=0; r<N; r++) 
 { 
  for (q=0; q<N-1; q++) 
    fprintf(data, "%12f\t", IDataOut[r][q]); 
    fprintf(data, "%12f\n", IDataOut[r][q]); 
 } 
 
/* Close the file */ 
fclose(data); 
 
puts("Data saved to out.txt"); 



 

 66

 
/***************** End Output ************************** 
********************************************************/ 
 
/***************** Release memory **********************/ 
free(IData); 
free(QData); 
free(IDataOut); 
free(QDataOut); 
 
return(0); 
} 
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APPENDIX F. MAP ROUTINE .MC CODE 

#include <libmap.h> 
void cfft_fp32(int n, int inv, int64_t a_in, int64_t b_in,  
               int64_t c_in, int64_t d_in, int sig_valid,  
               int64_t e_in, int64_t f_in, int twid_valid,  
               int starting, int64_t *a_out, int64_t *b_out,  
               int64_t *c_out, int64_t *d_out, 
               int *data_valid_out, int *xfrm_addr_out); 
 
void fft_map(float input[], float twiddle[], float output[],  
             int n, int frflag,int64_t* t_dma, int64_t* t_fwd, 
             int64_t* t_call, int map) 
{ 
 int  i, starting, inv, loop, npoint; 
 int  nbytes, cm_loc, obm_loc; 
 int64_t t0, t1, t2, t3, t4; 
 
int inidx, outidx, outctr, twididx, sig_len, valid_in, valid_out; 
 int  xfrm_addr_out; 
int64_t a_in, b_in, c_in, d_in, e_in, f_in, a_out, b_out, c_out, 
d_out; 
  
 /* input and output */ 
 OBM_BANK_A (a, int64_t, MAX_OBM_SIZE) 
 OBM_BANK_B (b, int64_t, MAX_OBM_SIZE) 
 OBM_BANK_C (c, int64_t, MAX_OBM_SIZE) 
 OBM_BANK_D (d, int64_t, MAX_OBM_SIZE) 
 /* twiddle table */ 
 OBM_BANK_E (e, int64_t, MAX_OBM_SIZE) 
 OBM_BANK_F (f, int64_t, MAX_OBM_SIZE) 
 
 /* start MAP timing */ 
 start_timer(); 
 read_timer(&t0); 
 
 /*  move twiddle table */ 
 npoint = 1 << n; 
 nbytes = npoint*4; 
 DMA_CPU(CM2OBM,e, MAP_OBM_stripe(1,"E,F"), twiddle, 1, nbytes, 0); 
 wait_DMA(0); 
 
 /*  move input data   */ 
 nbytes = npoint*8; 
 obm_loc = 0; 
 cm_loc  = 0; 
DMA_CPU(CM2OBM, &a[obm_loc], MAP_OBM_stripe(1,"A,B,C,D"),  
  &input[cm_loc], 1, nbytes, 0); 
 wait_DMA(0); 
 read_timer(&t1); 
 
 /* do fft */ 
 inv = 0; 
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 sig_len = npoint/4; 
 for (loop=0; loop < frflag; ++loop) { 
  inidx = 0; 
  outidx = 0; 
  outctr = 0; 
  starting = 1; 
#pragma loop noloop_dep 
#pragma loop noldst_clsh 
  do { 
   valid_in = ( inidx < sig_len) ? 1 : 0; 
  
   a_in = a[inidx]; 
   b_in = b[inidx]; 
   c_in = c[inidx]; 
   d_in = d[inidx]; 
   e_in = e[inidx]; 
   f_in = f[inidx]; 
  
   ++inidx; 
  
cfft_fp32 (n, inv, a_in, b_in, c_in, d_in, valid_in,     

     e_in, f_in, valid_in, starting, &a_out,  
     &b_out, &c_out, &d_out, &valid_out, &outidx); 

  
   if ( valid_out ) { 
    a[outidx] = a_out; 
    b[outidx] = b_out; 
    c[outidx] = c_out; 
    d[outidx] = d_out; 
   } 
   cg_accum_add_32_np(1, valid_out, 0, starting,  
 &outctr); 
   starting = 0; 
  } while ( outctr < sig_len ); 
  if ( loop == 0 ) { 
   inv = 1; 
   read_timer(&t2); 
  } 
 } 
 read_timer(&t3); 
 
 /*  move output data   */ 
 nbytes = npoint*8; 
 obm_loc = 0; 
 cm_loc  = 0; 
 DMA_CPU(OBM2CM, &a[obm_loc], MAP_OBM_stripe(1,"A,B,C,D"),  
&output[cm_loc], 1, nbytes, 0); 
 wait_DMA(0); 
 read_timer(&t4); 
 
 *t_dma = (t1 - t0) + (t4 - t3); 
 *t_fwd = t2 - t1; 
 *t_call = t4 - t0; 
} 
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APPENDIX G. MAKEFILE CODE 

# ---------------------------------- 
# User defines FILES, MAPFILES, and BIN here 
# ---------------------------------- 
FILES           = choiSRC.c 
 
MAPFILES        = fft.mc 
 
BIN             = Final_Output 
 
SRC_VERSION = comp 
SRC_TARGET = map_e 
SRC_FFT_LIB = /opt/SRCCI2.2/fft_lib 
 
# ---------------------------------- 
# Multi chip info provided here 
# (Leave commented out if not used) 
# ---------------------------------- 
#PRIMARY        = <primary file 1>   <primary file 2> 
 
#SECONDARY      = <secondary file 1> <secondary file 2> 
 
#CHIP2          = <file to compile to user chip 2> 
 
#----------------------------------- 
# User defined directory of code routines 
# that are to be inlined 
#------------------------------------ 
 
#INLINEDIR      = 
 
# ----------------------------------- 
# User defined macros info supplied here 
# 
# (Leave commented out if not used) 
# ----------------------------------- 
#MACROS         = <directory-name/macro-file> 
 
#MY_BLKBOX      = <directory-name/blackbox-file> 
#MY_NGO_DIR     = <directory-name> 
#MY_INFO        = <directory-name/info-file> 
# ----------------------------------- 
# Floating point macros selection 
# ----------------------------------- 
 
#FPMODE         = SRC_IEEE_V1 # Default SRC version IEEE 
#FPMODE         = SRC_IEEE_V2 # Size reduced SRC IEEE with 
                              # special rounding mode 
# ----------------------------------- 
# User supplied MCC and MFTN flags 
# ----------------------------------- 
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MY_MCCFLAGS     = -log 
MY_MFTNFLAGS    = -log 
 
# ----------------------------------- 
# User supplied flags for C & Fortran compilers 
# ----------------------------------- 
 
CC              = icc   # icc   for Intel cc for Gnu 
FC              = ifort # ifort for Intel f77 for Gnu 
#LD             = ifort # for Fortran or C/Fortran mixed 
LD              = icc   # for C codes 
 
CFLAGS          =  -O3 –tpp7 –xW -ip 
MY_FFLAGS       = 
MY_LDFLAGS      =       # Flags to include libs if needed 
# ----------------------------------- 
# VCS simulation settings 
# (Set as needed, otherwise just leave commented out) 
# ----------------------------------- 
 
USER_MACROLIBS = $(SRC_FFT_LIB) 
PAR_OPTIONS = -t 50 
 
#USEVCS         = yes   # YES or yes to use vcs instead of vcsi 
#VCSDUMP        = yes   # YES or yes to generate vcd+ trace dump 
# ----------------------------------- 
# No modifications are required below 
# ----------------------------------- 
MAKIN   ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make 
include $(MAKIN) 
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APPENDIX H. TIMING CODE 

This code was used to generate timing with more time resolution that whole seconds. The 

file name had to be included in the main SRC program. 

 
int timeval_subtract (struct timeval *result, struct timeval *x, struct 
timeval *y); 
 
/* Subtract the `struct timeval' values X and Y, 
        storing the result in RESULT. 
        Return 1 if the difference is negative, otherwise 0.  */ 
      
     int 
     timeval_subtract (result, x, y) 
          struct timeval *result, *x, *y; 
     { 
       /* Perform the carry for the later subtraction by updating y. */ 
       if (x->tv_usec < y->tv_usec) { 
         int nsec = (y->tv_usec - x->tv_usec) / 1000000 + 1; 
         y->tv_usec -= 1000000 * nsec; 
         y->tv_sec += nsec; 
       } 
       if (x->tv_usec - y->tv_usec > 1000000) { 
         int nsec = (x->tv_usec - y->tv_usec) / 1000000; 
         y->tv_usec += 1000000 * nsec; 
         y->tv_sec -= nsec; 
       } 
      
       /* Compute the time remaining to wait. 
          tv_usec is certainly positive. */ 
       result->tv_sec = x->tv_sec - y->tv_sec; 
       result->tv_usec = x->tv_usec - y->tv_usec; 
      
       /* Return 1 if result is negative. */ 
       return x->tv_sec < y->tv_sec; 
     } 
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APPENDIX I. TIME TRIALS 

 FMCW 
 MATLAB Code1 MATLAB Code2 C Code 

Trials 
Total 
(sec) 

CWD Kernel 
(sec) 

FFT 
(sec) 

Total 
(sec) 

CWD Kernel 
(sec) 

FFT 
(sec) 

Total 
(sec) 

FFT 
(sec) 

CWD Kernel 
(sec) 

1 42.135000 33.375445 0.032994 33.875000 27.220885 0.021414 6.808524 0.080723 6.619582 
2 42.931000 34.054506 0.033048 33.829000 27.249300 0.021069 6.825237 0.081218 6.635985 
3 42.010000 33.249822 0.034361 33.937000 27.271555 0.021729 6.844558 0.084141 6.651393 
4 41.900000 33.164924 0.033571 34.078000 27.493605 0.021720 6.800048 0.080538 6.611869 
5 41.978000 33.271557 0.032987 33.890000 27.292776 0.020370 6.879942 0.080919 6.690270 
6 42.666000 33.748402 0.033775 33.922000 27.243836 0.019518 6.856262 0.080819 6.667106 
7 43.104000 34.183792 0.032832 34.579000 27.878681 0.026133 6.807355 0.080926 6.617987 
8 43.401000 34.476949 0.033467 34.234000 27.504892 0.021777 6.882586 0.080646 6.693875 
9 43.291000 34.353970 0.034650 34.156000 27.482425 0.020707 6.850605 0.080853 6.661507 
10 42.150000 33.368591 0.032983 34.188000 27.491442 0.021798 6.823736 0.080805 6.634692 
11 42.088000 33.319626 0.033798 33.844000 27.205099 0.021059 6.881128 0.081181 6.691346 
12 42.150000 33.375786 0.032994 33.953000 27.345540 0.021920 6.863357 0.080828 6.674034 
13 42.103000 33.342221 0.033278 33.860000 27.228194 0.021159 6.887703 0.081034 6.698063 
14 42.103000 33.346012 0.032654 33.937000 27.316089 0.021754 6.870801 0.081149 6.681285 
15 42.197000 33.412101 0.033251 34.375000 27.663710 0.021993 6.860159 0.082067 6.669467 
16 42.182000 33.382078 0.033812 34.500000 27.737586 0.022044 6.847492 0.081104 6.657776 
17 42.166000 33.377174 0.033267 33.937000 27.250251 0.022059 6.853079 0.080427 6.664381 
18 42.166000 33.400553 0.034492 34.047000 27.350141 0.021588 6.834894 0.081031 6.645633 
19 42.166000 33.400032 0.033077 33.984000 27.329706 0.021966 6.883038 0.081108 6.693102 
20 42.275000 33.510122 0.034383 34.438000 27.492956 0.021777 6.885325 0.079861 6.697062 

Total 42.36 33.56 0.03 34.08 27.40 0.02 6.85 0.08 6.66 
All timing was done in seconds. 
C compiler options = -O3 -tpp7 -xW - align -Zp16 -ipo -static 
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 FMCW 
 SRC Code 
Trials Total Total* MAP Time DMA time FFT time Call Time uP Time 

1 39.539112 39.335979 0.03088881 0.02640878 0.00441859 0.20313405 39.30508923 
2 36.850487 36.647186 0.02943201 0.02495195 0.00441859 0.20329989 36.61775486 
3 37.895901 37.682663 0.03158952 0.02710949 0.00441859 0.21323718 37.65107403 
4 37.156990 36.913876 0.02748343 0.02300341 0.00441859 0.24311545 36.88639117 
5 36.410980 36.200962 0.02978616 0.02530614 0.00441859 0.21001655 36.17117751 
6 36.181431 35.977699 0.02488480 0.02040478 0.00441859 0.20373017 35.95281585 
7 36.245834 36.042522 0.02501928 0.02053926 0.00441859 0.20331076 36.01750431 
8 36.527813 36.324909 0.03044737 0.02596732 0.00441859 0.20290345 36.29446214 
9 36.311993 36.106174 0.02939976 0.02491973 0.00441859 0.20581640 36.07677649 

10 36.065289 35.860901 0.02539677 0.02091678 0.00441859 0.20438816 35.83550361 
11 36.206989 36.004547 0.02463551 0.02015550 0.00441859 0.20244157 35.97991221 
12 36.407448 36.199394 0.02469767 0.02021767 0.00441859 0.20805340 36.17469674 
13 36.246040 36.031265 0.03049769 0.02601764 0.00441859 0.21477588 36.00076677 
14 36.433971 36.222206 0.02617408 0.02169408 0.00441859 0.21176679 36.19603054 
15 36.422344 36.214184 0.02680014 0.02232016 0.00441859 0.20816153 36.18738254 
16 36.508163 36.298981 0.02438374 0.01990375 0.00441859 0.20918222 36.27459749 
17 36.360844 36.156540 0.02582351 0.02134350 0.00441859 0.20430477 36.13071538 
18 36.495571 36.292130 0.02489622 0.02041622 0.00441859 0.20344077 36.26723415 
19 36.250816 36.046371 0.03016247 0.02568245 0.00441859 0.20444332 36.01621056 
20 36.344505 36.128628 0.03166118 0.02718118 0.00441859 0.21587856 36.09696557 

Total 36.64 36.43 0.028 0.023 0.004 0.209 36.407 
All timing was done in seconds. 
* Note: The time to load data to the MAP was removed. 
MAP Time: Time spent on the MAP 
DMA Time: Time spend moving data to and from the MAP 
FFT Time: Time spent performing the FFT 
SRC*: SRC Time - DMA Time - Call Time 
uP Time: SRC Code - MAP Time - Call Time 
SRC CFLAGS =  -O3 -tpp7 -xW –ip 
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 Frank Code 
 MATLAB Code1 MATLAB Code2 C Code 

Trials 
Total 
(sec) 

CWD Kernel 
(sec) 

FFT 
(sec) 

Total 
(sec) 

CWD Kernel 
(sec) 

FFT 
(sec) 

Total 
(sec) 

FFT 
(sec) 

CWD Kernel 
(sec) 

1 42.369000 33.365577 0.033414 34.000000 27.315711 0.021717 6.844141 0.080820 6.654797 
2 42.733000 33.646276 0.049887 34.250000 27.513110 0.021823 6.834130 0.080920 6.645036 
3 42.233000 33.578743 0.032802 33.906000 27.223674 0.021586 6.843999 0.081263 6.654071 
4 42.296000 33.559779 0.033113 34.515000 27.799471 0.022082 6.845453 0.081297 6.655820 
5 42.328000 33.584434 0.032322 34.422000 27.673472 0.021852 6.846738 0.080967 6.657224 
6 42.344000 33.578885 0.033099 34.234000 27.379740 0.021882 6.853528 0.080616 6.664700 
7 42.390000 33.642125 0.033022 34.422000 27.467568 0.020859 6.881011 0.080962 6.690899 
8 42.343000 33.585125 0.033156 33.937000 27.303731 0.021937 6.891828 0.083358 6.699862 
9 42.359000 33.583179 0.032531 35.328000 28.473590 0.021335 6.810437 0.080880 6.621057 
10 42.328000 33.589742 0.032901 34.031000 27.338336 0.020316 6.839076 0.081477 6.649448 
11 42.358000 33.604350 0.032938 34.109000 27.345321 0.020727 6.823902 0.081002 6.634650 
12 42.312000 33.529369 0.033173 34.094000 27.371485 0.022010 6.890841 0.082058 6.700006 
13 42.374000 33.586357 0.032749 34.156000 27.354829 0.021732 6.894169 0.081091 6.704625 
14 42.296000 33.535529 0.033226 34.297000 27.522333 0.021299 6.883250 0.080872 6.693655 
15 42.343000 33.588860 0.032896 34.188000 27.434642 0.021678 6.804506 0.080463 6.616567 
16 42.390000 33.587745 0.032973 34.172000 27.465290 0.021410 6.865628 0.080768 6.675120 
17 42.375000 33.606989 0.032852 34.734000 28.018492 0.021692 6.837842 0.081170 6.648247 
18 42.406000 33.629493 0.032921 34.141000 27.426722 0.021726 6.832497 0.080994 6.642770 
19 42.453000 33.663165 0.034229 34.188000 27.476351 0.020960 6.824741 0.080735 6.636025 
20 42.484000 33.711542 0.035017 34.125000 27.417211 0.020435 6.866777 0.080756 6.677563 

Total 42.38 33.59 0.03 34.26 27.52 0.02 6.85 0.08 6.66 
All timing was done in seconds. 
C compiler options = -O3 -tpp7 -xW - align -Zp16 -ipo -static 
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 Frank Code 
 SRC Code 
Trials Total Total* MAP Time DMA time FFT time Call Time uP Time 

1 36.037533 35.824894 0.02494614 0.02046615 0.00441859 0.21264020 35.79994647 
2 36.402012 36.199043 0.03142209 0.02694206 0.00441859 0.20296672 36.16762306 
3 36.706581 36.503510 0.03133943 0.02685943 0.00441859 0.20307326 36.47216843 
4 36.627396 36.425247 0.03045193 0.02597190 0.00441859 0.20214872 36.39479498 
5 36.634857 36.431126 0.02475110 0.02027111 0.00441859 0.20373204 36.40637404 
6 36.534679 36.328270 0.02442199 0.01994198 0.00441859 0.20641008 36.30384734 
7 36.488415 36.279484 0.02540287 0.02092286 0.00441859 0.20892985 36.25408204 
8 36.678787 36.473137 0.02586151 0.02138151 0.00441859 0.20565060 36.44727512 
9 36.692760 36.487473 0.02592983 0.02144982 0.00441859 0.20528859 36.46154205 
10 36.381931 36.172554 0.02545808 0.02097806 0.00441859 0.20937862 36.14709460 
11 36.340466 36.135387 0.03014208 0.02566205 0.00441859 0.20507777 36.10524570 
12 36.525745 36.317646 0.02453365 0.02005367 0.00441859 0.20809847 36.29311327 
13 36.864136 36.660721 0.02454734 0.02006735 0.00441859 0.20341401 36.63617439 
14 36.635117 36.430798 0.02939719 0.02491719 0.00441859 0.20431866 36.40140073 
15 36.602978 36.397655 0.03144057 0.02696052 0.00441859 0.20532106 36.36621612 
16 36.709908 36.502457 0.02578093 0.02130095 0.00441859 0.20745090 36.47667570 
17 36.541664 36.333710 0.02741338 0.02293332 0.00441859 0.20795348 36.30629726 
18 36.556164 36.351639 0.02975448 0.02527445 0.00441859 0.20452464 36.32188467 
19 36.556137 36.354103 0.02582574 0.02134574 0.00441859 0.20203321 36.32827813 
20 36.717102 36.512592 0.03066544 0.02618542 0.00441859 0.20451060 36.48192601 

Total 36.56 36.36 0.027 0.023 0.004 0.206 36.329 
All timing was done in seconds. 
* Note: The time to load data to the MAP was removed. 
MAP Time: Time spent on the MAP 
DMA Time: Time spend moving data to and from the MAP 
FFT Time: Time spent performing the FFT 
SRC*: SRC Time - DMA Time - Call Time 
uP Time: SRC Code - MAP Time - Call Time 
SRC CFLAGS =  -O3 -tpp7 -xW –ip 
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 Costas Code 
 MATLAB Code1 MATLAB Code2 C Code 

Trials 
Total 
(sec) 

CWD Kernel 
(sec) 

FFT 
(sec) 

Total 
(sec) 

CWD Kernel 
(sec) 

FFT 
(sec) 

Total 
(sec) 

FFT 
(sec) 

CWD Kernel 
(sec) 

1 42.452000 33.644792 0.033099 34.438000 27.800132 0.021022 6.827953 0.080708 6.639722 
2 42.531000 33.678851 0.033074 33.937000 27.264355 0.021702 6.820967 0.080823 6.630867 
3 42.250000 33.536931 0.033085 33.938000 27.257868 0.020978 6.883820 0.081023 6.694394 
4 42.453000 33.709387 0.033097 34.015000 27.363153 0.020963 6.837323 0.080815 6.647776 
5 42.390000 33.606385 0.033135 34.031000 27.335227 0.021444 6.896061 0.080945 6.705398 
6 42.421000 33.622443 0.032710 34.250000 27.555693 0.022162 6.858750 0.080793 6.668965 
7 42.358000 33.569631 0.033214 33.921000 27.272657 0.021287 6.854811 0.081082 6.664936 
8 42.453000 33.637314 0.032873 34.578000 27.714712 0.021187 6.878653 0.080922 6.689140 
9 42.390000 33.627525 0.033220 34.343000 27.580230 0.021564 6.898957 0.079601 6.710012 
10 42.468000 33.708377 0.032968 34.578000 27.799739 0.022156 6.824855 0.080989 6.635727 
11 42.436000 33.656550 0.033018 34.344000 27.576596 0.021761 6.879972 0.080951 6.690359 
12 42.437000 33.667283 0.032891 34.235000 27.448125 0.021580 6.873613 0.081092 6.683549 
13 42.234000 33.481668 0.033241 34.235000 27.441689 0.021730 6.861605 0.080759 6.671818 
14 42.515000 33.567334 0.032537 34.407000 27.584517 0.021755 7.201554 0.081226 7.011066 
15 42.374000 33.611778 0.032966 34.078000 27.386950 0.021736 6.856291 0.081355 6.666557 
16 42.515000 33.672567 0.033127 34.250000 27.566007 0.021869 6.888370 0.081066 6.698781 
17 42.281000 33.539797 0.033310 34.609000 27.650112 0.021411 6.845149 0.081538 6.654523 
18 42.522000 33.726271 0.033072 34.422000 27.696157 0.021868 6.821400 0.080691 6.632646 
19 42.406000 33.624248 0.033099 34.516000 27.721190 0.021892 6.830422 0.080902 6.640982 
20 42.453000 33.676700 0.033248 34.921000 28.109629 0.021906 6.830434 0.081015 6.641037 

Total 42.42 33.63 0.03 34.30 27.56 0.02 6.87 0.08 6.68 
All timing was done in seconds. 
C compiler options = -O3 -tpp7 -xW - align -Zp16 -ipo -static 
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  Costas Code 
  SRC Code 

Trials Total Total* MAP Time DMA time FFT time Call Time uP Time 
1 37.302799 37.097576 0.02461905 0.02013903 0.00441859 0.20522486 37.07295531 
2 37.591682 37.378971 0.02519199 0.02071199 0.00441859 0.21271212 37.35377832 
3 37.805580 37.601227 0.02988138 0.02540133 0.00441859 0.20435169 37.57134707 
4 37.659775 37.456326 0.02821761 0.02373756 0.00441859 0.20344919 37.42810798 
5 37.777123 37.572552 0.02981857 0.02533853 0.00441859 0.20457046 37.54273347 
6 37.613869 37.405632 0.02617390 0.02169391 0.00441859 0.20823532 37.37945949 
7 37.630981 37.427681 0.02458823 0.02010822 0.00441859 0.20329888 37.40309434 
8 37.178364 36.971706 0.02907945 0.02459940 0.00441859 0.20727301 36.94201134 
9 37.433876 37.226604 0.02519191 0.02071190 0.00441859 0.20727301 37.20141112 

10 37.695400 37.490940 0.02593238 0.02145240 0.00441859 0.20446043 37.46500743 
11 37.118446 36.916069 0.02491966 0.02043967 0.00441859 0.20237710 36.89114959 
12 37.146481 36.943340 0.02589822 0.02141822 0.00441859 0.20314148 36.91744086 
13 37.324024 37.121887 0.02503816 0.02055814 0.00441859 0.20213591 37.09685013 
14 37.094601 36.890461 0.02578623 0.02130623 0.00441859 0.20414092 36.86467353 
15 37.266075 37.060028 0.02962512 0.02514508 0.00441859 0.20604864 37.03040137 
16 37.498753 37.296822 0.02902935 0.02454934 0.00441859 0.20192952 37.26779372 
17 37.341705 37.134121 0.02525445 0.02077448 0.00441859 0.20758465 37.10886622 
18 37.637043 37.430561 0.02853816 0.02405814 0.00441859 0.20648067 37.40202417 
19 37.301212 37.089687 0.02638647 0.02190646 0.00441859 0.21152438 37.06330146 
20 37.297043 37.091888 0.02525511 0.02077512 0.00441859 0.20515467 37.06663307 

Total 37.44 37.23 0.027 0.022 0.004 0.206 37.203 
All timing was done in seconds. 
* Note: The time to load data to the MAP was removed. 
MAP Time: Time spent on the MAP 
DMA Time: Time spend moving data to and from the MAP 
FFT Time: Time spent performing the FFT 
SRC*: SRC Time - DMA Time - Call Time 
uP Time: SRC Code - MAP Time - Call Time 
SRC CFLAGS =  -O3 -tpp7 -xW –ip 
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 Hybrid Costas 
 MATLAB Code1 MATLAB Code2 C Code 

Trials 
Total 
(sec) 

CWD Kernel 
(sec) 

FFT 
(sec) 

Total 
(sec) 

CWD Kernel 
(sec) 

FFT 
(sec) 

Total 
(sec) 

FFT 
(sec) 

CWD Kernel 
(sec) 

1 42.156000 33.404463 0.032637 34.672000 27.798693 0.021706 6.840940 0.080836 6.651849 
2 42.218000 33.483403 0.033034 34.734000 27.659293 0.021984 6.893402 0.080879 6.703728 
3 42.452000 33.693234 0.032905 34.532000 27.692799 0.021587 6.874091 0.081097 6.683978 
4 42.484000 33.714697 0.033103 35.265000 28.511046 0.022104 6.848965 0.080966 6.659166 
5 42.437000 33.649921 0.033156 34.156000 27.422455 0.021961 6.880320 0.080965 6.690943 
6 42.375000 33.623231 0.033136 34.063000 27.373033 0.021879 6.827070 0.084321 6.634487 
7 42.453000 33.688644 0.033181 34.219000 27.405117 0.021925 6.875590 0.080855 6.685956 
8 42.390000 33.636462 0.033875 34.000000 27.316936 0.021688 6.872042 0.081031 6.681623 
9 42.421000 33.634448 0.032818 34.312000 27.540350 0.020932 6.808278 0.081140 6.618563 
10 42.468000 33.604427 0.032865 34.156000 27.418034 0.021732 6.884420 0.079418 6.696768 
11 42.406000 33.650054 0.032896 34.110000 27.398181 0.020651 6.884737 0.081233 6.694547 
12 42.343000 33.585685 0.032834 34.234000 27.437805 0.021846 6.889027 0.080972 6.699274 
13 42.437000 33.652155 0.033198 34.110000 27.335791 0.021602 6.839795 0.081163 6.650174 
14 42.390000 33.643646 0.033176 34.375000 27.530217 0.021734 6.832598 0.080816 6.643556 
15 42.859000 34.095596 0.033139 34.079000 27.383975 0.021287 6.863264 0.080584 6.674164 
16 42.453000 33.667348 0.033250 34.219000 27.380969 0.020605 6.827325 0.081337 6.637525 
17 42.489000 33.704778 0.033240 34.297000 27.497522 0.021914 6.863383 0.081089 6.673473 
18 42.520000 33.702544 0.033026 34.188000 27.414738 0.022365 6.830806 0.081098 6.641465 
19 42.535000 33.735316 0.032894 34.297000 27.551898 0.020001 6.880188 0.080837 6.691059 
20 42.504000 33.705944 0.033742 34.157000 27.415263 0.022090 6.838972 0.081188 6.649432 

Total 42.44 33.66 0.03 34.31 27.52 0.02 6.86 0.08 6.67 
All timing was done in seconds. 
C compiler options = -O3 -tpp7 -xW - align -Zp16 -ipo -static 
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 Hybrid Costas 
  SRC Code 

Trials Total Total* MAP Time DMA time FFT time Call Time uP Time 
1 36.697266 36.494972 0.02494792 0.02046790 0.00441859 0.20229483 36.47002287
2 37.102898 36.895813 0.02508159 0.02060158 0.00441859 0.20708627 36.87072978
3 36.805889 36.603035 0.02528087 0.02080087 0.00441859 0.20285505 36.57775321
4 36.907913 36.702850 0.02946466 0.02498460 0.00441859 0.20506221 36.67338634
5 36.845196 36.640434 0.02999288 0.02551285 0.00441859 0.20476004 36.61044285
6 37.049484 36.847870 0.02509415 0.02061415 0.00441859 0.20161253 36.82277757
7 36.828751 36.625122 0.02487262 0.02039263 0.00441859 0.20363045 36.60024754
8 36.927158 36.715683 0.02516238 0.02068239 0.00441859 0.21147461 36.69052137
9 37.153046 36.946129 0.02602743 0.02154743 0.00441859 0.20691627 36.92010195

10 37.046185 36.843735 0.02458902 0.02010902 0.00441859 0.20244803 36.81914749
11 37.026020 36.821045 0.02583526 0.02135527 0.00441859 0.20497392 36.79521087
12 37.016129 36.811539 0.02581206 0.02133207 0.00441859 0.20459092 36.78572556
13 36.723034 36.519859 0.02839505 0.02391500 0.00441859 0.20317361 36.49146525
14 36.842052 36.638428 0.02563430 0.02115432 0.00441859 0.20362334 36.61279482
15 37.047661 36.841053 0.02642455 0.02194455 0.00441859 0.20660663 36.81462965
16 37.038479 36.829472 0.02475087 0.02027087 0.00441859 0.20900835 36.80471963
17 36.819927 36.610607 0.03055760 0.02607758 0.00441859 0.20932110 36.58004852
18 37.192162 36.977692 0.03139229 0.02691231 0.00441859 0.21446964 36.94629963
19 36.924355 36.720692 0.02849400 0.02401398 0.00441859 0.20366256 36.69219799
20 37.142910 36.942451 0.02458846 0.02010847 0.00441859 0.20045713 36.91786441

Total 36.96 36.75 0.027 0.022 0.004 0.205 36.725 
All timing was done in seconds. 
* Note: The time to load data to the MAP was removed. 
MAP Time: Time spent on the MAP 
DMA Time: Time spend moving data to and from the MAP 
FFT Time: Time spent performing the FFT 
SRC*: SRC Time - DMA Time - Call Time 
uP Time: SRC Code - MAP Time - Call Time 
SRC CFLAGS =  -O3 -tpp7 -xW –ip 
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